全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Three-Tier Architecture for User-Centric Ubiquitous Networked Sensing

DOI: 10.5402/2012/637134

Full-Text   Cite this paper   Add to My Lib

Abstract:

In a sensor network, sensor data are usually forwarded from sensor nodes to a database. This tight coupling between the nodes and the database has been complicating user-centric applications that traverse multiple different sensor networks. To break this coupling, thus enabling user-centric applications, we propose a three-tier architecture for ubiquitous networked sensing. Its major feature is that it contains the “core” device, which is assumed to be a terminal held by users between sensor nodes and sensor databases. This architecture supports the sensor data directly transmitted to and consumed by the core device, in addition to the classic ones that are transmitted to the sensor database first, and downloaded to the core. The major contribution of this paper are the following three-fold. First, we clarify the architecture itself. Researchers can leverage the architecture as the baseline of their development. Second, we show two types of prototype implementations of the core device. Industry is allowed to develop a new product for practical use of ambient sensing. Finally, we show a range of applications that are enabled by the architecture and indicate issues that need to be addressed for further investigation. 1. Introduction The recent research and productization of wireless sensor nodes have been enabling ubiquitous networked sensing environment where sensor nodes are densely embedded around users in homes, offices, parks, roads, and so forth. For example, home owners would manage their own sensor networks [1]. A university campus can install its own campus sensing network [2]. Opposing to the node-side, technologies towards sophisticated sensor database have been deeply investigated. Usually, sensor data are directly forwarded from sensor nodes to a database. In the above examples, there would be a sensor database at the home and the campus to store the data captured there. These two sides, sensor nodes and sensor databases, thus form a tightly coupled networked sensing architecture. This tight coupling has been complicating user-centric applications that traverse multiple different sensor networks. For example, suppose an application that records aerial pollution in the places where its user visits. Since aerial sensors are not small, it is not practical to assume that the user carries the sensors. This application thus needs to acquire data from the aerial sensors around the user. With the classic tightly coupled architecture, the application is required to identify the databases where the aerial pollution data are stored and query for the

References

[1]  S. S. Intille, K. Larson, J. S. Beaudin, J. Nawyn, E. M. Tapia, and P. Kaushik, “A living laboratory for the design and evaluation of ubiquitous computing technologies,” in Proceedings of the Conference on extended Abstracts on Human Factors in Computing Systems (CHI '05), pp. 1941–1944, ACM Press, New York, NY, USA, 2005.
[2]  A. Rowe, M. E. Berges, G. Bhatia, et al., “Sensor andrew: large-scale campus-wide sensing and actuation,” IBM Journal of Research and Development, vol. 55, no. 1, article 6, 2011.
[3]  N. Thepvilojanapong, S. Konomi, and Y. Tobe, “A study of cooperative human probes in urban sensing environments,” IEICE Transactions on Communications, vol. 93, no. 11, pp. 2868–2878, 2010.
[4]  A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, and R. A. Peterson, “People-centric urban sensing,” in Proceedings of the 2nd Annual International Workshop on Wireless Internet (WICON '06), ACM Press, New York, NY, USA, 2006.
[5]  M. Ito, Y. Katagiri, M. Ishikawa, and H. Tokuda, “Airy notes: an experiment of microclimate monitoring in shinjuku gyoen garden,” in Proceedings of the 4th International Conference on Networked Sensing Systems (INSS '07), pp. 260–266, June 2007.
[6]  A. Kansal, S. Nath, J. Liu, and F. Zhao, “SenseWeb: an infrastructure for shared sensing,” IEEE Multimedia, vol. 14, no. 4, pp. 8–13, 2007.
[7]  R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin, “Habitat monitoring with sensor networks,” Communications of the ACM, vol. 47, no. 6, pp. 34–40, 2004.
[8]  G. D. Abowd, C. G. Atkeson, A. F. Bobick, et al., “Living laboratories: the future computing environments group at the georgia institute of technology,” in Proceedings of the Conference on Extended Abstracts on Human Factors in Computing Systems (CHI '00), ACM Press, New York, NY, USA, 2000.
[9]  S. Meyer and A. Rakotonirainy, “A survey of research on context-aware homes,” in Proceedings of the Australasian Information Security Workshop (AISW '03), vol. 21, pp. 159–168, Australian Computer Society, Darlinghurst, Australia, 2003.
[10]  N. Kurata, B. F. Spencer, and M. Ruiz-Sandoval, “Risk monitoring of buildings with wireless sensor networks,” Structural Control and Health Monitoring, vol. 12, no. 3-4, pp. 315–327, 2005.
[11]  S. Kim, S. Pakzad, D. Culler et al., “Health monitoring of civil infrastructures using wireless sensor networks,” in Proceedings of the 6th International Symposium on Information Processing in Sensor Networks (IPSN '07), pp. 254–263, ACM Press, New York, NY, USA, April 2007.
[12]  I. Talzi, A. Hasler, S. Gruber, and C. Tschudin, “PermaSense: investigating permafrost with a WSN in the Swiss Alps,” in Proceedings of the 4th Workshop on Embedded Networked Sensors (EmNets '07), pp. 8–12, ACM Press, New York, NY, USA, June 2007.
[13]  I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data collection, storage, and retrieval with an underwater sensor network,” in Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems (SenSys '05), pp. 154–165, ACM Press, New York, NY, USA, 2005.
[14]  G. Werner-Allen, K. Lorincz, M. Welsh et al., “Deploying a wireless sensor network on an active volcano,” IEEE Internet Computing, vol. 10, no. 2, pp. 18–25, 2006.
[15]  N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Communications Magazine, vol. 48, no. 9, pp. 140–150, 2010.
[16]  A. Natarajan, M. Motani, B. De Silva, K. K. Yap, and K. C. Chua, “Investigating network architectures for body sensor networks,” in Proceedings of the 5th International Conference on Mobile Systems, Applications and Services, pp. 19–24, ACM Press, New York, NY, USA, June 2007.
[17]  J. Luo, J. Panchard, M. Piórkowski, M. Grossglauser, and J.-P. Hubaux, “Mobiroute: routing towards a mobile sink for improving lifetime in sensor networks,” in Distributed Computing in Sensor Systems, P. Gibbons, T. Abdelzaher, J. Aspnes, and R. Rao, Eds., vol. 4026 of Lecture Notes in Computer Science, pp. 480–497, Springer, Berlin, Germany, 2006.
[18]  K. Fodor and A. Vidács, “Efficient routing to mobile sinks in wireless sensor networks,” in Proceedings of the 3rd International Conference on Wireless Internet (WICON '07), pp. 1–7, ICST, Brussels, Belgium, 2007.
[19]  F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-tier data dissemination model for large-scale wireless sensor networks,” in Proceedings of The 8th Annual International Conference on Mobile Computing and Networking, pp. 148–159, ACM Press, New York, NY, USA, September 2002.
[20]  P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan, “IrisNet: an architecture for a worldwide sensor web,” IEEE Pervasive Computing, vol. 2, no. 4, pp. 22–33, 2003.
[21]  A. Komaki, J. Yura, M. Iwai, J. Nakazawa, K. Takashio, and H. Tokuda, “Clickcatalog: retracing precious memory using paper-based media controller,” in Proceedings of the International Conference on Machine Learning and Cybernetics, vol. 4, pp. 2077–2082, August 2007.
[22]  J. Nakazawa, J. Yura, T. Iwamoto, H. Yokoyama, and H. Tokuda, “Bridging sensor networks and the internet on cellular phones: towards richer and easier-to-use sensor network applications for end-users,” in Proceedings of the 6th International Conference on Networked Sensing Systems (INSS '09), pp. 94–97, June 2009.
[23]  J. Nakazawa, H. Tokuda, W. K. Edwards, and U. Ramachandran, “A bridging framework for universal interoperability in pervasive systems,” in Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS '06), July 2006.
[24]  Qualcomm Inc. Qualcomm brew.
[25]  M. Balazinska, A. Deshpande, M. J. Franklin et al., “Data management in the worldwide sensor web,” IEEE Pervasive Computing, vol. 6, no. 2, pp. 30–40, 2007.
[26]  M. Leopold, M. B. Dydensborg, and P. Bonnet, “Bluetooth and sensor networks: a reality check,” in Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys '03), pp. 103–113, November 2003.
[27]  L. Zhong, M. Sinclair, and R. Bittner, “A phone-centered body sensor network platform: cost, energy efficiency & user interface,” in Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSn '06), pp. 179–182, April 2006.
[28]  M. Hirafuji, H. Yoichi, and M. Wada, “Field server: multifunctional wireless sensor network node for earth observation,” in Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems (SenSys '05), p. 304, ACM Press, New York, NY, USA, 2005.
[29]  B. Hull, V. Bychkovsky, Y. Zhang et al., “CarTel: a distributed mobile sensor computing system,” in Proceedings of the 4th International Conference on Embedded Networked Sensor Systems (SenSys '06), pp. 125–138, Boulder, Colo, USA, November 2006.
[30]  K. Aberer, M Hauswirth, and A. Salehi, “Infrastructure for data processing in large-scale interconnected sensor networks,” in Proceedings of the International Conference on Mobile Data Management, pp. 198–205, Washington, DC, USA, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133