全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modeling the Effect of Crude Oil Impacted Sand on the Properties of Concrete Using Artificial Neural Networks

DOI: 10.1155/2013/609379

Full-Text   Cite this paper   Add to My Lib

Abstract:

A network of the feedforward-type artificial neural networks (ANNs) was used to predict the compressive strength of concrete made from crude oil contaminated soil samples at 3, 7, 14, 28, 56, 84, and 168 days at different degrees of contamination of 2.5%, 5%, 10%, 15%, 20% and 25%. A total of 49 samples were used in the training, testing, and prediction phase of the modeling in the ratio 32?:?11?:?7. The TANH activation function was used and the maximum number of iterations was limited to 20,000 the model used a momentum of 0.6 and a learning rate of 0.031056. Twenty (20) different architectures were considered and the most suitable one was the 2-2-1. Statistical analysis of the output of the network was carried out and the correlation coefficient of the training and testing data is 0.9955712 and 0.980097. The result of the network has shown that the use of neural networks is effective in the prediction of the compressive strength of concrete made from crude oil impacted sand. 1. Introduction Concrete is unarguably the commonest material used in the construction of civil engineering structures; it is a mixture of cement, aggregates (fine and coarse), and water. The slurry (i.e., the cement and water) binds the aggregates to a hard mass; the paste hardens because of the hydration (i.e., the chemical reaction of the cement and water). It is a versatile construction material adaptable for different uses. Depending on the requirements demanded by the engineer, several other materials like admixture and additives can be added to alter the properties of the concrete in order to yield the expected result. The increase in demand for crude oil as a source of energy and as a primary raw material for industries has resulted in an increase in its production, transportation, and refining which in turn has resulted in gross pollution of the environment. Oil pollution occurs when crude oil is introduced into the environment directly or indirectly by man’s activities resulting in an unfavourable change in such a way that the safety and welfare of any living organism are endangered. The principal causes of oil pollution in the world include poor designs of ships and terminals, mechanical failure, operation procedures, human error, oil well blowout, and transportation. Other causes of oil spillage in Nigeria arise from corrosion of pipelines and tankers and sabotage [1]. Due to this occurrence of spillage, the sand of the environment gets contaminated with crude oil. It is this contaminated sand that is used in the making of concrete to erect structures in the

References

[1]  O. T. Badejo and P. C. Nwilo, Management of Oil Spill Dispersal Along the Coastal Areas, Department of Surveying and Geoinformatics, University of Lagos, Lagos, Nigeria, 2004.
[2]  W. O. Ajagbe, O. A. Agbede, and B. I. O. Dahunsi, “Effect of crude oil impacted sand on the properties of concrete,” in Proceedings of the 4th West Africa Built Environment Research (WABER '12), S. Laryea, S. A. Agyepong, R. Leiringer, and W. Hughes, Eds., pp. 177–189, Abuja, Nigeria, 2012.
[3]  R. Gupta, M. A. Kewalramani, and A. Goel, “Prediction of concrete strength using neural-expert system,” Journal of Materials in Civil Engineering, vol. 18, no. 3, pp. 462–466, 2006.
[4]  G. M. Ayininuola, “Influence of diesel oil and bitumen on compressive strength of concrete,” Journal of Civil Engineering, vol. 37, no. 1, pp. 65–71, 2009.
[5]  W. O. Ajagbe, O. O. Omokehinde, G. A. Alade, and O. A. Agbede, “Effect of Crude Oil impacted sand on compressive strength of concrete,” Construction and Building Materials, vol. 26, no. 1, pp. 9–12, 2012.
[6]  K. Jankovi?, D. Nikoli?, D. Bojovi?, L. Lon?ar, and Z. Romakov, “The estimation of compressive strength of normal and recycled aggregate concrete,” Architecture and Civil Engineering, vol. 9, no. 3, pp. 419–431, 2011.
[7]  B. Krose and P. V. D. Smagt, Introduction to Neural Networks, Faculty of Mathematics and Computer Science, University of Amsterdam, Amsterdam, The Netherlands, 1996.
[8]  M. Chakraborty, “Artificial neural network for performance modeling and optimization of CMOS analog circuits,” International Journal of Computer Applications, vol. 58, no. 18, pp. 6–12, 2012.
[9]  I. C. Yeh, “Exploring concrete slump model using artificial neural networks,” Journal of Computing in Civil Engineering, vol. 20, no. 3, pp. 217–221, 2006.
[10]  S. Bhoka and S. O. Ogunlana, “Application of artificial neural network to forecast construction duration of buildings at the predesign stage,” Engineering, Construction and Architectural Management, vol. 6, no. 2, pp. 133–144., 1999.
[11]  M. A. Shahin, M. B. Jaksa, and H. R. Maier, “Artificial neural network applications in geotechnical engineering,” Australian Geomechanics, pp. 49–62, 2001.
[12]  A. W. C. Oreta and K. Kawashima, “Neural network modeling of confined compressive strength and strain of circular concrete columns,” Journal of Structural Engineering, vol. 129, no. 4, pp. 554–561, 2003.
[13]  M. B. Jaksa, H. R. Maier, and M. A. Shahin, “Future challenges for artificial neural network modelling in engineering,” in Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG '08), pp. 1710–1719, 2008.
[14]  Z. Waszczyszyn, “Artificial neural networks in civil and structural engineering: ten years of research in Poland,” Computer Assisted Mechanics and Engineering Sciences, vol. 13, no. 4, pp. 489–512, 2006.
[15]  H. Adeli, “Neural networks in civil engineering: 1989–2000,” Computer-Aided Civil and Infrastructure Engineering, vol. 16, no. 2, pp. 126–142, 2001.
[16]  H. G. Ni and J. Z. Wang, “Prediction of compressive strength of concrete by neural networks,” Cement and Concrete Research, vol. 30, no. 8, pp. 1245–1250, 2000.
[17]  M. Saridemir, “Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks,” Advances in Engineering Software, vol. 40, no. 5, pp. 350–355, 2009.
[18]  M. A. Sayed, “Statistical modeling and prediction of compressive strength of concrete,” Concrete Research Letters, vol. 3, no. 2, pp. 452–458, 2012.
[19]  K. W. Day, Concrete Mix Design, Quality Control and Specification, E & FN Spon, London, UK, 2nd edition, 1992.
[20]  British Standard Institution, “BS, 1881: part 1. Method for making test cubes from fresh concrete,” London, UK, 1983.
[21]  British Standards Institution, “BS 1881: part 111. Method of normal curing of test specimens (20_C method),” London, UK, 1983.
[22]  British Standards Institution, “BS, 1881: part 116. Method for determination of compressive strength of concrete cubes,” London, UK, 1983.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133