全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Finite Element Simulation on Punching Shear Behavior of Reinforced Concrete Slabs

DOI: 10.5402/2012/501816

Full-Text   Cite this paper   Add to My Lib

Abstract:

A finite element simulation for experimental punching shear behavior of reinforced concrete slab is presented in this paper. The numerical simulation is based on previously tested 15 reinforced concrete model slabs. Finite element analysis of reinforced concrete slabs subjected to punching load is evaluated and results are compared with experiments. This study involves development of a nonlinear strategy which implements solution for a realistic description of the deflection, load carrying capacity and crack, pattern related to punching shear of RC slabs for several types of slab thickness, edge restraints, and reinforcement ratio. It has been shown that the load versus. deflection diagram and ultimate load capacity obtained from FE analysis closely match with the experimental results. Comparison of crack pattern of the slab also shows good agreement. It has been shown that using appropriate method and material for numerical simulation, significant benefit can be achieved using finite element tools and advanced computing facilities in obtaining safe and optimum solutions without doing expensive and time-consuming laboratory tests. 1. Introduction For the design of punching shear, code provisions rely mostly on empirical methods derived from the test results on simply supported conventional [1] and thin slab specimens [2]. Some of the present-day code provisions usually specify the punching shear strength as a function of concrete strength alone. Thus, these codes do not take adequate account of the possible role of specimen size, edge restraint, as well as effect of longitudinal reinforcement [3, 4]. Extensive experimental data and analysis using possible role of restraint, effect of reinforcement, and slab thickness should be considered in the code provision. The present study comprised of a planned series of finite element analysis to simulate test results on restrained as well as unrestrained slabs, variation of flexural reinforcement, and slab thickness. Nonlinear analysis programs have become increasingly popular in recent years as engineers attempt to more realistically model the behavior of structures subjected to all types of loading [5]. Computer simulation makes the accuracy for describing actual behavior of structure, compare the behavior with laboratory experimenting methods, prospects in the process of scientific research, and relation with experiment and analysis methods. Nonlinear-layered finite element method is capable of analyzing cracking and punching shear failure of reinforced concrete flat plates with spandrel beams or torsion

References

[1]  W. Salim and W. M. Sebastian, “Punching shear failure in reinforced concrete slabs with compressive membrane action,” ACI Structural Journal, vol. 100, no. 4, pp. 471–479, 2003.
[2]  J. S. Lovrovich and D. I. McLean, “Punching shear behavior of slabs with varying span-depth ratios,” ACI Structural Journal, vol. 87, no. 5, pp. 507–511, 1990.
[3]  A. K. M. J. Alam, K. M. Amanat, and S. M. Seraj, “Experimental investigation of edge restraint on punching shear behaviour of RC slabs,” The IES Journal Part A, vol. 2, no. 1, pp. 35–46, 2009.
[4]  J. S. Kuang and C. T. Morley, “Punching shear behavior of restrained reinforced concrete slabs,” ACI Structural Journal, vol. 89, no. 1, pp. 13–19, 1992.
[5]  M. B. D. Hueste and J. K. Wight, “Nonlinear punching shear failure model for interior slab-column connections,” Journal of Structural Engineering, vol. 125, no. 9, pp. 997–1008, 1999.
[6]  W. Wang and S. Teng, “Finite-element analysis of reinforced concrete flat plate structures by layered shell element,” Journal of Structural Engineering, vol. 134, no. 12, pp. 1862–1872, 2008.
[7]  Y. C. Loo and H. Guan, “Cracking and punching shear failure analysis of RC flat plates,” Journal of Structural Engineering, vol. 123, no. 10, pp. 1321–1330, 1997.
[8]  F. J. Vecchio and M. P. Collins, “The modified compression field theory for reinforced concrete elements subjected to shear,” Journal of the American Concrete Institute, vol. 83, no. 2, pp. 219–231, 1986.
[9]  R. G. Selby and F. J. Vecchio, “Three-dimensional constitutive relations for reinforced concrete,” Tech. Rep. 93-02, University of Toronto, Department of Civil Engineering, Toronta, Canada, 1993.
[10]  C. G. Bailey, W. S. Toh, and B. M. Chan, “Simplified and advanced analysis of membrane action of concrete slabs,” ACI Structural Journal, vol. 105, no. 1, pp. 30–40, 2008.
[11]  W. Dilger, G. Birkle, and D. Mitchell, “Effect of flexural reinforcement on punching shear resistance,” in Punching Shear in Reinforced Concrete Slabs, SP-232-4, pp. 57–74, American Concrete Institute, 2005.
[12]  N. J. Gardner, “ACI 318-05, CS A23.3-04, eurocode 2 (2003), DIN 1045-1 (2001), BS 8110-97 and CEB-FIP MC 90 provisions for punching shear of reinforced concrete flat slabs,” in Punching Shear in Reinforced Concrete Slabs, SP-232-1, pp. 1–22, American Concrete Institute, 2005.
[13]  Y. Tan and S. Teng, “Interior slab-rectangular column connections under biaxial lateral loading,” in Punching Shear in Reinforced Concrete Slabs, SP-232-9, pp. 147–174, American Concrete Institute, 2005.
[14]  TNO DIANA BV, DIANA Finite Element Analysis User's Manual Release 8.1, TNO DIANA BV, Delft, The Netherlands, 2nd edition, 2003.
[15]  H. Hofmeyer and A. A. van den Bos, “Total strain fe model for reinforced concrete floors on piles,” Structural Design of Tall and Special Buildings, vol. 17, no. 4, pp. 809–822, 2008.
[16]  E. Thorenfeldt, A. Tomaszewicz, and J. J. Jensen, “Mechanical properties of high-strength concrete and applications in design,” in Proceedings of the Symposium on Utilization of High-Strength Concrete (Stavanger, Norway), Tapir, Trondheim, Norway, 1987.
[17]  H. W. Reinhardt, “Fracture mechanics of an elastic softening material like concrete,” Heron, vol. 29, no. 2, 1984.
[18]  D. A. Hordijk, Local approach to fatigue of concrete [Ph.D. thesis], Delft University of Technology, 1991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133