全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quality by Design Approach for the Development and Validation of Glipizide, an Antidiabetic Drug, by RP-UPLC with Application to Formulated Forms and Urine

DOI: 10.1155/2013/738397

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quality by design (QbD) refers to the achievement of certain predictable quality with desired and predetermined specifications. The objective of this study was to develop and demonstrate an integrated multivariate approach to develop and quantify the constituent concentrations of glipizide (GPZ) drug in its pure and tablet forms. The method was developed using Zorbax Extend C-18 (50?mm × 4.6?mm × 1.8?μm) column with mobile phase consisting of a mixture of phosphate buffer of pH 3.5 and acetonitrile (60?:?40?v/v). The method fulfilled validation criteria and was shown to be sensitive, with limits of detection (LOD) and quantitation (LOQ) of 0.001 and 0.005?μg?mL?1, respectively. The percentage relative standard deviations for robustness and ruggedness were observed within the range of 0.1 and 0.99. The calibration graph was linear in the range of 0.005–300?μg?mL?1. The applicability of the method was shown by the analysis of formulated drug and spiked urine samples. The proposed method can be used for routine analysis in quality control laboratories for its bulk and formulated product, and this is the first UPLC method reported for the assay of GPZ in bulk, formulated form and urine. 1. Introduction Quality by design (QbD) is a systematic approach to development that begins with predefined objectives and emphasizes product and process understanding and process control, based on sound science and quality risk management [1, 2]. The objective of the QbD initiative is to demonstrate both understanding and control of pharmaceutical processes to deliver high quality pharmaceutical products while affording opportunities for continuous improvement. QbD delivers a better understanding of method capabilities and limitations and ensures a superior chance of successful downstream method validation and transfer. It has become an important paradigm in the pharmaceutical industry since its introduction by the US Food and Drug Administration [3–8]. The QbD concept can be extended to analytical methods [9–16]. In addition, all international drug administration agencies endorse the QbD approach because it is expected that such performance-based routine methods can be changed within the analytical target profile without regulatory resubmission and approval. Glipizide (GPZ), chemically known as N-[2-[4-[[[(Cyclohexylamino) carbonyl] amino] sulfonyl]phenyl]ethyl]-5-methylpyrazine carboxamide] (Figure 1) is an oral antihyperglycemic agent [17] used in the treatment of noninsulin-dependent diabetes mellitus [18]. It lowers the blood glucose level in humans by stimulating the

References

[1]  Renu lal, “New drug quality,” FDA/CDER Small Business Chronicle, 2012.
[2]  “International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use,” Step 4 ICH Q8, (R) step-2, 2009.
[3]  Y. Tang, “Quality by design approaches to analytical methods—FDA perspective,” http://www.fda.gov/downloads/AboutFDA/CentersOffices/OfficeofMedicalProducts_and_Tobacco/CDER/UCM301056.pdf.
[4]  “International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use,” ICH harmonized tripartite guideline, Draft Step 4. Pharmaceutical Development Q8(R1), 2008.
[5]  L. Yu, “Pharmaceutical quality by design: product and process development, understanding and control,” Pharmaceutical Research, vol. 25, no. 4, pp. 781–791, 2008.
[6]  S. L. Lee, A. S. Raw, and L. Yu, “Significance of drug substance physiochemical properties in regulatory quality by design,” in Preformulation in Solid Dosage Form Development, pp. 571–583, Informa Healthcare, London, UK, 2008.
[7]  R. Mhatre and A. S. Rathore, “Quality by design: an overview of the basic concepts,” in Quality by Design for Biopharmaceuticals, chapter 1, Wiley, New York, NY, USA, 2009.
[8]  F. G. Vogt and A. S. Kord, “Development of quality-by-design analytical methods,” Journal of Pharmaceutical Sciences, vol. 100, no. 3, pp. 797–812, 2011.
[9]  Y. Li, G. J. Terfloth, and A. S. Kord, “A systematic approach to RP-HPLC method development in a pharmaceutical QbD environment,” American Pharmaceutical Review, vol. 12, no. 4, 2009.
[10]  L. Zhou, J. M. Socha, F. G. Vogt, S. Chen, and A. S. Kord, “A systematic method development strategy for water determinations in drug substance using Karl Fischer titrations,” American Pharmaceutical Review, vol. 13, no. 1, pp. 74–84, 2010.
[11]  M. Sun, D. Q. Liu, and A. S. Kord, “A systematic method development strategy for determination of pharmaceutical genotoxic impurities,” Organic Process Research and Development, vol. 14, no. 4, pp. 977–985, 2010.
[12]  P. F. Gavin and B. A. Olsen, “A quality by design approach to impurity method development for atomoxetine hydrochloride,” Journal of Pharmaceutical and Biomedical Analysis, vol. 46, no. 3, pp. 431–441, 2008.
[13]  M. G. Schweitzer, M. Pohl, M. H. Brown et al., “Implications and opportunities of applying the principles of QbD to analytical measurements,” Pharmaceutical Technology, vol. 22, no. 2, pp. 29–36, 2010.
[14]  P. Borman, P. Nethercote, M. Chatfield, D. Thompson, and K. Truman, “The application of quality by design to analytical methods,” Pharmaceutical Technology, vol. 31, pp. 142–152, 2007.
[15]  I. Krull, M. Swartz, J. Turpin, P. H. Lukulay, and R. Verseput, “A quality-by-design methodology for rapid LC method development, part-I,” LC-GC North America, vol. 26, pp. 1190–1197, 2008.
[16]  I. Krull, M. Swartz, J. Turpin, P. H. Lukulay, and R. Verseput, “A quality-by-design methodology for rapid LC method development, part II,” LC-GC North America, vol. 27, pp. 48–61, 2009.
[17]  Merck Research Laboratories, The Merck Index, Merck, Whitehouse Station, NJ, USA, 13th edition, 2001.
[18]  S. R. Lahoti, P. K. Puranik, A. A. Heda, and R. B. Navale, “Development and validation of RP-HPLC method for analysis of glipizide in guinea pig plasma and its application to pharmacokinetic study,” International Journal of PharmTech Research, vol. 2, no. 3, pp. 1649–1654, 2010.
[19]  Z. J. Lin, D. Desai-Krieger, and L. Shum, “Simultaneous determination of glipizide and rosiglitazone unbound drug concentrations in plasma by equilibrium dialysis and liquid chromatography- tandem mass spectrometry,” Journal of Chromatography B, vol. 801, no. 2, pp. 265–272, 2004.
[20]  C. R. Shuman, “Glipizide: an overview,” The American Journal of Medicine, vol. 75, no. 5, part 2, pp. 55–59, 1983.
[21]  “The United States pharmacopoeia 32,” the National Formulary Rockville, USP Convention, pp. 2499, 2009.
[22]  “European pharmacopoeia,” EDQM, version 6, pp. 1977–1979, 2008.
[23]  L. Narasimham and Y. S. Barhate D, “Simultaneous quantification of metformin and glipizide in human plasma by high-performance liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study,” Journal of Pharmacy Research, vol. 3, no. 12, pp. 3081–3087, 2010.
[24]  N. Li, Y. Deng, F. Qin, J. Yu, and F. Li, “Simultaneous quantification of metformin and glipizide in human plasma by high-performance liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study,” Biomedical Chromatography, vol. 27, no. 2, pp. 191–196, 2013.
[25]  V. Rayanam, L. Rao, and M. V. Ramana, “Development and validation of LC method for the estimation of glipizide in pharmaceutical dosage form and serum,” International Journal of Research in Pharmacy and Chemistry, vol. 1, no. 1, pp. 50–54, 2011.
[26]  K. S. Lakshmi and T. Rajesh, “Separation and quantification of eight antidiabetic drugs on a high-performance liquid chromatography: its application to human plasma assay,” ISRN Pharmaceutics, vol. 2011, Article ID 521353, 7 pages, 2011.
[27]  N. Sultana, M. S. Arayne, S. N. Ali, and M. H. Zuberi, “Simultaneous determination of glipizide and glimepride by Rp-Hplc in dosage formulations and in human serum,” Medicinal Chemistry Research, vol. 21, no. 9, pp. 2443–2448, 2011.
[28]  K. S. Lakshmi and T. T. Rajesh, “Development and validation of RP-HPLC method for simultaneous determination of glipizide,rosiglitazone, pioglitazone, glibenclamide and glimepiride in pharmaceutical dosage forms andhuman plasma,” Journal of the Iranian Chemical Society, vol. 8, no. 1, pp. 31–37, 2011.
[29]  S. J. Rahila, P. P. Manisha, M. R. Prabha, K. Asif, and Y. G. Pramod, “Sensitive and selective analytical method for the quantification of glipizide in human plasma,” International Research Journal of Pharmacy, vol. 1, no. 1, pp. 378–383, 2010.
[30]  H. Emilsson, “High-performance liquid chromatographic determination of glipizide in human plasma and urine,” Journal of Chromatography, vol. 421, no. 2, pp. 319–326, 1987.
[31]  J. Shaodong, W. J. Lee, J. W. Ee, J. H. Park, S. W. Kwon, and J. Lee, “Comparison of ultraviolet detection, evaporative light scattering detection and charged aerosol detection methods for liquid-chromatographic determination of anti-diabetic drugs,” Journal of Pharmaceutical and Biomedical Analysis, vol. 51, no. 4, pp. 973–978, 2010.
[32]  H. Liping, X. Yan, H. Jiaxiu et al., “Determination of glipizide in sustained release tablets by RP-HPLC,” Zhonghua Yixue Yanjiu Zazhi, vol. 11, no. 6, pp. 337–339, 2011.
[33]  M. U. Reddy, P. Y. Reddy, V. Reddy, P. Somasekhar, and B. Varaprasad, “Single and high resolution RP-HPLC method for the determination of 6 antidiabetic drug products,” Journal of Pharmacy Research, vol. 4, no. 4, pp. 1209–1212, 2011.
[34]  S. Rahila and K. Asif, “Reverse phase high performance liquid chromatographic method for the analysis of glipizide in pharmaceutical dosage forms,” International Journal of Research in Ayurveda & Pharmacy, vol. 1, no. 2, pp. 455–458, 2010.
[35]  A. Gumieniczek, A. Berecka, and ?. Komsta, “Stability-indicating validated HPLC method for simultaneous determination of oral antidiabetic drugs from thiazolidinedione and sulfonylurea groups in combined dosage forms,” Journal of AOAC International, vol. 93, no. 4, pp. 1086–1092, 2010.
[36]  M. Mangesh and S. Shanmukhappa, “A validated RP-HPLC method for estimation of Glipizide in it's pure and pharmaceutical dosage form (tablets),” Material Science Research India, vol. 6, no. 1, pp. 223–226, 2009.
[37]  S. V. Saradhi, V. S. Kiran, V. H. Bindu, and G. D. Rao, “High pressure liquid chromatography estimation of glipizide in pharmaceutical dosage forms,” Asian Journal of Chemistry, vol. 18, no. 2, pp. 1309–1312, 2006.
[38]  A. Dubey and I. C. Shukla, “Simultaneous determination of Glipizide and Metformin hydrochloride in pharmaceutical preparation by HPLC,” Journal of the Indian Chemical Society, vol. 81, no. 1, pp. 84–86, 2004.
[39]  L. Yang, H. Lijuan, W. Jide et al., “Simultaneous determination of three diabetic drugs in urine by high performance liquid chromatography,” Fenxi Ceshi Xuebao, vol. 30, no. 3, pp. 293–297, 2011.
[40]  L. Adhikari, S. Jagadev, S. Sahoo, P. N. Murthy, and U. S. Mishra, “Devlopement and validation of UV-visible spectrophotometric method for simultaneous determination of Pioglitazone Hydrochloride, Metformin Hydrochloride and glipizide in its bulk and pharmaceutical dosage form (tablet),” International Journal of ChemTech Research, vol. 4, no. 2, pp. 625–630, 2012.
[41]  C. T. Thomas, R. Y. Padmanabha, and N. Devanna, “Simultaneous spectrophotometric estimation of Metformin Hydrochloride and Glipizide in tablet dosage forms,” International Journal of PharmTech Research, vol. 3, no. 4, pp. 2064–2067, 2011.
[42]  R. M. Abd-Elgawad and E. H. Shimaa, “Voltammetric and spectrophotometric studies on the inclusion complex of glipizide with β-cyclodextrin,” Eurasian Journal of Analytical Chemistry, vol. 6, no. 1, pp. 13–21, 2011.
[43]  M. Mangesh and A. Shanmukhappa, “UV spectrophotometric method for determination of glipizide in its pure and pharmaceutical dosage form (tablets),” Journal of the Institution of Chemists, vol. 81, no. 3, pp. 93–96, 2009.
[44]  A. Aruna and K. Nancey, “Simultaneous estimation of metformin HCL and glipizide in solid dosage forms by ultraviolet spectrophotometry,” Indian Drugs, vol. 37, no. 11, pp. 533–536, 2000.
[45]  P. Rita, C. Barbara, A. Cinzia et al., “Comparison of capillary electrophoresis with HPLC for diagnosis of factitious hypoglycaemia,” Clinical Chemistry, vol. 46, no. 11, pp. 1773–1780, 2000.
[46]  N. Li, M. Cui, X. Lu, F. Qin, K. Jiang, and F. Li, “A rapid and reliable UPLC-MS/MS method for the identification and quantification of fourteen synthetic anti-diabetic drugs in adulterated Chinese proprietary medicines and dietary supplements,” Biomedical Chromatography, vol. 24, no. 11, pp. 1255–1261, 2010.
[47]  H. K. Trivedi, N. Kshtri, V. Patel, and V. Roa, “Development and validation of an uplc method for in-vitro study of glipizide extended release tablets,” International Journal of Pharmaceutical Science and Research, vol. 3, no. 9, pp. 3317–3322, 2012.
[48]  “Photostability testing of new active substances and medicinal products,” ICH Q1, (B), 1998.
[49]  “Stability testing of new drug substances and products,” ICH Q1A (R2), 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133