In this work three chromatographic methods were developed to reduce the total time of the analysis of main compounds in Aloe vera extracts. The first method was developed in a regular reverse phase chromatographic system using a particulate reverse phase C-18 column. Methods already published were used as a starting point for the development of the new method. All the compounds were separated in 32 minutes. The second method was developed in a regular reverse phase chromatographic system employing a monolithic type column. Using a 4.5?mL min?1 flow, the total time of analysis was reduced to 6 minutes with very similar resolution values. The third method was developed in an ultraperformance liquid chromatographic system, and the final time for the analysis of the phenolic compounds was reduced to 4 minutes. The analytical properties of the three chromatographic methods were compared for the main compounds in the chromatograms. Robustness of the three new methods was also checked with regard to the injection volume and the amount of methanol in the sample. A fast method (4?min) is then available for bioactive compounds from Aloe vera determination. 1. Introduction Aloe vera has long been used as a remedy in many cultures. Aloe preparations, including products based on both the gel and the leaf, are used, among other reasons, as laxatives, in creams for skin, in functional foods, and as treatment for a wide range of diseases [1]. Aloin is the main anthraquinone in aloe leaf, which occurs naturally as a mixture of two diastereoisomers aloin A and aloin B. In addition to these compounds, other compounds including aloenin, aloenin B, and isoaloesin have been related to the biological properties of Aloe vera extracts [2]. Among the most recent properties studied for these compounds, the effects of aloin derivatives against some human breast cancer cell lines [3] have been reported. Other activities found for these compounds include several antimicrobial properties [4] and some oxidant and antioxidant properties on free radical-induced DNA breaks [5]. There are several factors which can influence the levels of aloin derivatives in the leaves of aloe plants, including cultivar conditions, age of the plant, and the health conditions. Therefore, the starting material to obtain the extracts can show clear differences [6]. These variations in the composition of Aloe can result in related products with different chemical and physical properties. Therefore, analytical methods to determine the aloin amounts in different plant material and manufactured products are
References
[1]
V. Steenkamp and M. J. Stewart, “Medicinal applications and toxicological activities of Aloe products,” Pharmaceutical Biology, vol. 45, no. 5, pp. 411–420, 2007.
[2]
D. Saccù, P. Bogoni, and G. Procida, “Aloe exudate: characterization by reversed phase HPLC and headspace GC-MS,” Journal of Agricultural and Food Chemistry, vol. 49, no. 10, pp. 4526–4530, 2001.
[3]
A. Y. Esmat, C. Tomasetto, and M. C. Rio, “Cytotoxicity of a natural anthraquinone (Aloin) against human breast cancer cell lines with and without ErbB-2-topoisomerase IIa coamplification,” Cancer Biology and Therapy, vol. 5, no. 1, pp. 97–103, 2006.
[4]
L. Kambizi, N. Sultana, and A. J. Afolayan, “Bioactive compounds isolated from Aloe ferox: a plant traditionally used for the treatment of sexually transmitted infections in the Eastern Cape, South Africa,” Pharmaceutical Biology, vol. 42, no. 8, pp. 636–639, 2004.
[5]
B. Tian and Y. Hua, “Concentration-dependence of prooxidant and antioxidant effects of aloin and aloe-emodin on DNA,” Food Chemistry, vol. 91, no. 3, pp. 413–418, 2005.
[6]
Y. Hu, J. Xu, and Q. Hu, “Evaluation of antioxidant potential of Aloe vera (Aloe barbadensis Miller) extracts,” Journal of Agricultural and Food Chemistry, vol. 51, no. 26, pp. 7788–7791, 2003.
[7]
N. Okamura, M. Asai, N. Hine, and A. Yagi, “High-performance liquid chromatographic determination of phenolic compounds in Aloe species,” Journal of Chromatography A, vol. 746, no. 2, pp. 225–231, 1996.
[8]
M. A. ElSohly, W. Gul, B. Avula, and I. A. Khan, “Determination of the anthraquinones aloe-emodin and aloin-a by liquid chromatography with mass spectrometric and diode array detection,” Journal of AOAC International, vol. 90, no. 1, pp. 28–42, 2007.
[9]
W. Rebecca, O. Kayser, H. Hagels, K. H. Zessin, M. Madundo, and N. Gamba, “The phytochemical profile and identification of main phenolic compounds from the leaf exudate of Aloe secundiflora by high-performance liquid chromatography-mass spectroscopy,” Phytochemical Analysis, vol. 14, no. 2, pp. 83–86, 2003.
[10]
M. K. Park, J. H. Park, N. Y. Kim et al., “Analysis of 13 phenolic compounds in aloe species by high performance liquid chromatography,” Phytochemical Analysis, vol. 9, pp. 186–191, 1998.
[11]
M. Zahn, T. Trinh, M. L. Jeong et al., “A reversed-phase high-performance liquid chromatographic method for the determination of Aloesin, Aloeresin A and anthraquinone in Aloe ferox,” Phytochemical Analysis, vol. 19, no. 2, pp. 122–126, 2008.
[12]
N. Wu and R. Thompson, “Fast and efficient separations using reversed phase liquid chromatography,” Journal of Liquid Chromatography and Related Technologies, vol. 29, no. 7-8, pp. 949–988, 2006.
[13]
N. Wu and A. M. Clausen, “Fundamental and practical aspects of ultrahigh pressure liquid chromatography for fast separations,” Journal of Separation Science, vol. 30, no. 8, pp. 1167–1182, 2007.