A selective ultraperformance liquid chromatographic (UPLC) method for the quantification of valproic acid and its known related impurities using ion pair reagent has been developed. The method includes reversed-phase Acquity HSS T3 column with 100?mm?×?2.1?mm i.d. and 1.7?μ particle size. The mobile phase consists of acetonitrile, 5?mM 1-hexanesulphonic acid sodium salt, flow rate is 0.6?mL/min, and UV detection is performed at 215?nm. A system suitability test (SST) was developed to govern the quality of the separation. The developed method has been validated further with respect to linearity, accuracy, precision, selectivity, LOD, LOQ, and Robustness. 1. Introduction Valproic acid is chemically known as 2-propylpentanoic acid. Chemical structures of valproic acid and its pharmacopeial-related impurities are given in Figure 1. Valproic acid (VPA) is a chemical compound that has found clinical use as an anticonvulsant and mood-stabilizing drug, primarily in the treatment of epilepsy, bipolar disorder, and less commonly, it is also used to treat migraine headaches and schizophrenia [1–4]. To our knowledge, there is no paper describing an ultraperformance liquid chromatographic (UPLC) method that allows the separation of valproic acid and its related known impurities in bulk drugs. However, there are the UPLC-MS/MS method for the simultaneous determination of valproic acid and other 21 antiepileptic drugs for the routine therapeutic drug monitoring [5]. Furthermore we have used an ion pair reagent to resolute the valproic acid and its impurities more specifically, that is 2-isopropylpentanoic acid which is a structural isomer of valproic acid. Some articles are available on isocratic HPLC methods for the determination of valproic acid [6–10]. Gas chromatographic and colorimetric methods are also available in the literature for quantification of valproic acid [11–15]. Methods for determination of valproic acid by HPLC, LC-MS, or LC-MS/MS from biological matrix have also been published [16–26]. In addition, the capillary electrophoresis methods for the determination of valproic acid in different biological samples are also available [27–30]. Applying the above methods for quantification of impurities in a bulk valproic acid sample gives poor separation. Hence, the objective of this study is to develop a more selective LC method for the analysis of valproic acid and its related impurities. Besides this, it is accurate, precise, selective, robust, and linear with a reasonable analysis time. Furthermore, the developed method is applicable for the analysis of
References
[1]
T. R. Henry, “The history of valproate in clinical neuroscience,” Psychopharmacology Bulletin, vol. 37, supplement 2, pp. 5–16, 2003.
[2]
G. Rosenberg, “The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees?” Cellular and Molecular Life Sciences, vol. 64, no. 16, pp. 2090–2103, 2007.
[3]
E. Posner and N. Lorenzo, Posttraumatic epilepsy, 2006, http://www.emedicine.com/NEURO/topic318.htm.
[4]
MediLexicon International Ltd, FDA Issues Approvable Letter for Stavzor Delayed Release Valproic Acid Capsules, 2007, http://www.medicalnewstoday.com/articles/86674.php.
[5]
M. Shiba, S. Hashi, H. Nakanishi, S. Masuda, T. Katsura, and I. Yano, “Detection of 22 antiepileptic drugs by ultra-performance liquid chromatography coupled with tandum mass spectrometry applicable to routine therapeutic drug monitoring,” Biomedical Chromatography, vol. 26, pp. 1519–1528, 2012.
[6]
P. N. Yat, I. Odidi, A. Odidi et al., “A rapid and simple stability-indicating HPLC method for the analysis of valproic acid in divalproex sodium formulations,” Pharmacopeial Forum, vol. 30, no. 6, pp. 2281–2294, 2004.
[7]
V. Ioffe, T. Kalendarev, I. Rubinstein, and G. Zupkovitz, “Reverse phase HPLC for polar lipids. Simple and selective HPLC procedures for analysis of phospholipid-based derivatives of valproic acid and various non-steroidal anti-inflammatory drugs,” Journal of Pharmaceutical and Biomedical Analysis, vol. 30, no. 3, pp. 391–403, 2002.
[8]
L. S. W. Steijns, J. Bouw, and J. Van der Weide, “Evaluation of fluorescence polarization assays for measuring valproic acid, phenytoin, carbamazepine and phenobarbital in serum,” Therapeutic Drug Monitoring, vol. 24, no. 3, pp. 432–435, 2002.
[9]
C. A. Lau-Cam and R. W. Roos, “HPLC method with precolumn phenacylation for the assay of valproic acid and its salts in pharmaceutical dosage forms,” Journal of Liquid Chromatography and Related Technologies, vol. 20, no. 13, pp. 2075–2087, 1997.
[10]
H. Liu, L. J. Forman, J. Montoya, C. Eggers, C. Barham, and M. Delgado, “Determination of valproic acid by high-performance liquid chromatography with photodiode-array and fluorescence detection,” Journal of Chromatography, vol. 576, no. 1, pp. 163–169, 1992.
[11]
M. A. Farajzadeh, K. Farhadi, A. A. Matin, P. Hashemi, and A. Jouyban, “Headspace solid-phase microextraction-gas chromatography method for the determination of valproic acid in human serum, and formulations using hollow-fiber coated wire,” Analytical Sciences, vol. 25, no. 7, pp. 875–879, 2009.
[12]
P. Shahdousti, A. Mohammadi, and N. Alizadeh, “Determination of valproic acid in human serum and pharmaceutical preparations by headspace liquid-phase microextraction gas chromatography-flame ionization detection without prior derivatization,” Journal of Chromatography B, vol. 850, no. 1-2, pp. 128–133, 2007.
[13]
C. Deng, N. Li, J. Ji, B. Yang, G. Duan, and X. Zhang, “Development of water-phase derivatization followed by solid-phase microextraction and gas chromatography/mass spectrometry for fast determination of valproic acid in human plasma,” Rapid Communications in Mass Spectrometry, vol. 20, no. 8, pp. 1281–1287, 2006.
[14]
R. L. Dills and D. D. Shen, “Methods to reduce background interferences in electron-capture gas chromatographic analysis of valproic acid and its unsaturated metabolites after derivatization with pentafluorobenzyl bromide,” Journal of Chromatography B, vol. 690, no. 1-2, pp. 139–152, 1997.
[15]
W. Czarnecki and B. Ha?czyńska, “Colorimetric determination of valproic acid and its salts,” Acta Poloniae Pharmaceutica, vol. 56, no. 5, pp. 353–355, 1999.
[16]
K. Matsuura, T. Ohmori, M. Nakamura, Y. Itoh, and K. Hirano, “A simple and rapid determination of valproic acid in human plasma using a non-porous silica column and liquid chromatography with tandem mass spectrometric detection,” Biomedical Chromatography, vol. 22, no. 4, pp. 387–393, 2008.
[17]
D. S. Jain, G. Subbaiah, M. Sanyal, and P. Shrivastav, “A high throughput and selective method for the estimation of valproic acid an antiepileptic drug in human plasma by tandem LC-MS/MS,” Talanta, vol. 72, no. 1, pp. 80–88, 2007.
[18]
H. Amini, M. Javan, and A. Ahmadiani, “Development and validation of a sensitive assay of valproic acid in human plasma by high-performance liquid chromatography without prior derivatization,” Journal of Chromatography B, vol. 830, no. 2, pp. 368–371, 2006.
[19]
V. Pucci, E. Monteagudo, and F. Bonelli, “High sensitivity determination of valproic acid in mouse plasma using semi-automated sample preparation and liquid chromatography with tandem mass spectrometric detection,” Rapid Communications in Mass Spectrometry, vol. 19, no. 24, pp. 3713–3718, 2005.
[20]
M. C. Lin, H. S. Kou, C. C. Chen, S. M. Wu, and H. L. Wu, “Simple and sensitive fluorimetric liquid chromatography method for the determination of valproic acid in plasma,” Journal of Chromatography B, vol. 810, no. 1, pp. 169–172, 2004.
[21]
P. Kishore, V. Rajani Kumar, V. Satyanarayana, and D. R. Krishna, “HPLC determination of valproic acid in human serum,” Pharmazie, vol. 58, no. 6, pp. 378–380, 2003.
[22]
M. D. Rukhadze, M. V. Gonashvili, A. N. Zirakishvili, and N. V. Okudzhava, “HPLC determination of valproic acid as bromophenacyl ester in blood plasma,” Pharmaceutical Chemistry Journal, vol. 36, no. 1, pp. 45–47, 2002.
[23]
S. Hara, M. Kamura, K. Inoue, M. Fukuzawa, N. Ono, and T. Kuroda, “Determination of valproic acid in human serum by high-performance liquid chromatography with fluorescence detection,” Biological and Pharmaceutical Bulletin, vol. 22, no. 9, pp. 975–977, 1999.
[24]
C. Lucarelli, P. Villa, E. Lombaradi, P. Prandini, and A. Brega, “HPLC method for the simultaneous analysis of valproic acid and other common anticonvulsant drugs in human plasma or serum,” Chromatographia, vol. 33, no. 1-2, pp. 37–40, 1992.
[25]
L. J. Lovett, G. A. Nygard, and G. R. Erdmann, “HPLC determination of valproic acid in human serum using ultraviolet detection,” Journal of Liquid Chromatography, vol. 10, no. 4, pp. 687–699, 1987.
[26]
F. A. L. Van der Horst, G. G. Eikelboom, and J. J. M. Holthuis, “High-performance liquid chromatographic determination of valproic acid in plasma using a micelle-mediated pre-column derivatization,” Journal of Chromatography A, vol. 456, pp. 191–199, 1986.
[27]
L. Budáková, H. Brozmanová, F. Kvasni?ka, and M. Grundmann, “Determination of valproic acid by on-line coupled capillary isotachophoresis with capillary zone electrophoresis with conductometric detection,” Ceska a Slovenska Farmacie, vol. 56, no. 5, pp. 249–253, 2007.
[28]
G. K. Belin, S. Kr?henbühl, and P. C. Hauser, “Direct determination of valproic acid in biological fluids by capillary electrophoresis with contactless conductivity detection,” Journal of Chromatography B, vol. 847, no. 2, pp. 205–209, 2007.
[29]
V. Pucci, R. Mandrioli, and M. A. Raggi, “Determination of valproic acid (2-propylpentanoic acid) in human plasma by capillary electrophoresis with indirect UV detection,” Electrophoresis, vol. 24, no. 12-13, pp. 2076–2083, 2003.
[30]
J. Jin, T. Wang, and S. F. Y. Li, “Indirect laser-induced fluorescence detection of Valproic Acid in human serum by capillary electrophoresis,” Electrophoresis, vol. 20, pp. 1856–1861, 1999.