Microalga is one of the most compelling microbial biomasses for biodiesel production. Various pretreatment processes, namely, enzyme treatment, lysis by acid, ultrasonicator, microwaves, autoclave, and 40% NaCl, for nitrogen replete and depleted algal cultures of Nannochloropsis oculata had been carried out to check the most feasible and effective technique to disrupt cells for procuring lipids, for which concentrations were determined. Fatty acid composition, essential functional groups, and cell disruption were analyzed by GC-MS, FT-IR Spectroscopy, and Nile Red fluorescent microscopy, respectively. The present investigation showed that lipid yield was higher in nitrogen depleted cells than that in normally nourished cells. GC-MS revealed the presence of major fatty acids—palmitic, oleic, stearic, arachidic, lauric, and linoleic acids. Highest efficiency was found when cells were pretreated using acid for 3?h. The lipid content was calculated as 33.18% and 54.26% for nitrogen rich cells and nitrogen starved cells, respectively. This work thus aided in identifying the most eligible pretreatment process to avail lipids from cells, to convert them to eco-friendly and nonpolluting biodiesel. 1. Introduction Increasing population and uncontrolled urbanization have created serious problems of energy requirement. Due to a sudden hike in energy consumption, it is anticipated that there would be deterioration in oil reserves by 2050. Continuous use of fossil fuels resulted in effect on environment by increasing greenhouse gas emission leads to climatic changes [1]. Therefore, there is a current demand to find out the alternative eco-friendly fuel against petrodiesel. Biodiesel has been considered as a major alternative for fossil fuel, as it is a biodegradable, renewable and nontoxic fuel [2]. Fatty acid methyl esters originating from vegetable oils and animal fats are known as biodiesel. It does not contribute net carbon dioxide or sulfur to the atmosphere and emits less gaseous pollutants than the petrodiesel [3]. Plants and algae are good candidates, as alternative energy sources, as they obtain their energy from the sunlight and build up their biomass by removing carbon dioxide from atmosphere through photosynthesis [4]. Recently, there is much interest in lipid production from microalgae because they have multiple advantages over traditional energy crops [5]. Microalgae have a high photosynthetic efficiency, rapid growth rate, shorter doubling time, and higher biomass production rate and utilize very less land than conventional crops [6, 7]. Biodiesel
References
[1]
P. Schlagermann, G. Gottlicher, R. Dillschneider, R. Rosello-Sastre, and C. Posten, “Composition of algal oil and its potential as biofuel,” Journal of Combustion, vol. 2012, Article ID 285185, 14 pages, 2012.
[2]
H.-C. Chen, H.-Y. Ju, T.-T. Wu et al., “Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 950725, 6 pages, 2011.
[3]
A. Widjaja, C.-C. Chien, and Y.-H. Ju, “Study of increasing lipid production from fresh water microalgae Chlorella vulgaris,” Journal of the Taiwan Institute of Chemical Engineers, vol. 40, no. 1, pp. 13–20, 2009.
[4]
M. A. Rodrigues and E. P. S. Bon, “Evaluation of chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis,” Enzyme Research, vol. 2011, Article ID 405603, 5 pages, 2011.
[5]
E. Ryckebosch, K. Muylaert, and I. Foubert, “Optimization of an analytical procedure for extraction of lipids from microalgae,” Journal of the American Oil Chemists' Society, vol. 89, no. 2, pp. 189–198, 2012.
[6]
H. Zheng, J. Yin, Z. Gao, H. Huang, X. Ji, and C. Dou, “Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves,” Applied Biochemistry and Biotechnology, vol. 164, no. 7, pp. 1215–1224, 2011.
[7]
P. Mercer and R. E. Armenta, “Developments in oil extraction from microalgae,” European Journal of Lipid Science and Technology, vol. 113, no. 5, pp. 539–547, 2011.
[8]
T. Suganya and S. Renganathan, “Optimization and kinetic studies on algal oil extraction from marine macroalgae Ulva lactuca,” Bioresource Technology, vol. 107, pp. 319–326, 2012.
[9]
K. Sander and G. S. Murthy, “Enzymatic degradation of microalgal cell walls,” in Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting (ASABE '09), Paper Number: 1035636, pp. 2489–2500, June 2009.
[10]
J.-Y. Lee, C. Yoo, S.-Y. Jun, C.-Y. Ahn, and H.-M. Oh, “Comparison of several methods for effective lipid extraction from microalgae,” Bioresource Technology, vol. 101, no. 1, pp. S75–S77, 2010.
[11]
G. Jin, F. Yang, C. Hu, H. Shen, and Z. K. Zhao, “Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidium toruloides,” Bioresource Technology, vol. 111, pp. 378–382, 2012.
[12]
E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911–917, 1959.
[13]
N. G.-E. Mohammady, C. W. Rieken, S. R. Lindell et al., “Age of nitrogen deficient microalgal cells is a key factor for maximizing lipid content,” Research Journal of Phytochemistry, vol. 6, no. 2, pp. 42–53, 2012.
[14]
C.-H. Su, C.-C. Fu, Y.-C. Chang et al., “Simultaneous estimation of chlorophyll a and lipid contents in microalgae by three-color analysis,” Biotechnology and Bioengineering, vol. 99, no. 4, pp. 1034–1039, 2008.
[15]
O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.
[16]
C. Yeesang and B. Cheirsilp, “Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand,” Bioresource Technology, vol. 102, no. 3, pp. 3034–3040, 2011.
[17]
M. Alsull and W. M. W. Omar, “Responses of Tetraselmis sp. and Nannochloropsis sp. isolated from Penang National Park coastal waters, Malaysia, to the combined influences of salinity, light and nitrogen limitation,” in Proceedings of the International Conference on Chemical, Ecology and Environmental Sciences (ICEES '12), pp. 142–145, Bangkok, Thailand, March 2012.
[18]
C. M. Beal, M. E. Webber, R. S. Ruoff, and R. E. Hebner, “Lipid analysis of Neochloris oleoabundans by liquid state NMR,” Biotechnology and Bioengineering, vol. 106, no. 4, pp. 573–583, 2010.
[19]
D. Feng, Z. Chen, S. Xue, and W. Zhang, “Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement,” Bioresource Technology, vol. 102, no. 12, pp. 6710–6716, 2011.
[20]
G. Ahlgren and P. Hyenstrand, “Nitrogen limitation effects of different nitrogen sources on nutritional quality of two freshwater organisms, Scenedesmus quadricauda (Chlorophyceae) and Synechococcus sp. (Cyanophyceae),” Journal of Phycology, vol. 39, no. 5, pp. 906–917, 2003.
[21]
M. Hoffmann, K. Marxen, R. Schulz, and K. H. Vanselow, “TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments,” Marine Drugs, vol. 8, no. 9, pp. 2526–2545, 2010.
[22]
S. Elumalai, V. Prakasam, and R. Selvarajan, “Optimization of abiotic conditions suitable for the production of biodiesel from Chlorella vulgaris,” Indian Journal of Science and Technology, vol. 4, no. 2, pp. 91–97, 2011.
[23]
U. Pick and T. Rachutin-Zalogin, “Kinetic anomalies in the interactions of Nile red with microalgae,” Journal of Microbiological Methods, vol. 88, no. 2, pp. 189–196, 2012.
[24]
M. M. Phukan, R. S. Chutia, B. K. Konwar, and R. Kataki, “Microalgae Chlorella as a potential bio-energy feedstock,” Applied Energy, vol. 88, no. 10, pp. 3307–3312, 2011.
[25]
N. Rukminasari, “Effect of nutrient depletion and temperature tressed on growth and lipid accumulation in marine-green algae Nannochloropsis sp,” American Journal of Research Communication. In press.
[26]
C.-C. Fu, T.-C. Hung, J.-Y. Chen, C.-H. Su, and W.-T. Wu, “Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction,” Bioresource Technology, vol. 101, no. 22, pp. 8750–8754, 2010.
[27]
W. L. Zemke-White, K. D. Clements, and P. J. Harris, “Acid lysis of macroalgae by marine herbivorous fishes: effects of acid pH on cell wall porosity,” Journal of Experimental Marine Biology and Ecology, vol. 245, no. 1, pp. 57–68, 2000.
[28]
R. Harun and M. K. Danquah, “Influence of acid pre-treatment on microalgal biomass for bioethanol production,” Process Biochemistry, vol. 46, no. 1, pp. 304–309, 2011.
[29]
C. Dejoye, M. A. Vian, G. Lumia, C. Bouscarle, F. Charton, and F. Chemat, “Combined extraction processes of lipid from Chlorella vulgaris microalgae: microwave prior to supercritical carbon dioxide extraction,” International Journal of Molecular Sciences, vol. 12, no. 12, pp. 9332–9341, 2011.
[30]
S. Li, H. Zhang, D. Han, and K. H. Row, “Optimization of enzymatic extraction of polysaccharides from some marine algae by response surface methodology,” Korean Journal of Chemical Engineering, vol. 29, no. 5, pp. 650–656, 2012.
[31]
G. Huang, F. Chen, D. Wei, X. Zhang, and G. Chen, “Biodiesel production by microalgal biotechnology,” Applied Energy, vol. 87, no. 1, pp. 38–46, 2010.
[32]
N. O. Zhila, G. S. Kalacheva, and T. G. Volova, “Effect of nitrogen limitation on the growth and lipid composition of the green alga Botryococcus braunii Kütz IPPAS H-252,” Russian Journal of Plant Physiology, vol. 52, no. 3, pp. 311–319, 2005.
[33]
Q. Lin, N. Gu, G. Li, J. Lin, L. Huang, and L. Tan, “Effects of inorganic carbon concentration on carbon formation, nitrate utilization, biomass and oil accumulation of Nannochloropsis oculata CS 179,” Bioresource Technology, vol. 111, pp. 353–359, 2012.