全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Sliver Nanoparticles on Wool Fibre

DOI: 10.5402/2012/842021

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sliver nanocolloids have been synthesized by chemical reduction of sliver salt solution, characterized by SEM usage of nanoparticles. Sliver nanocolloids are treated with wool fibres and dyed wool fibres (direct and acid dyes). The physical properties, colour strength, and fastness properties have been studied for dyed wool fibres and ordinary wool fibres. It is observed that the fibres with nanotreated fibres have better strength than untreated wool fibres. It is also observed that there is considerable improvement in colour strength and colour fastness of silver nanocolloids-treated wool fibres (dyed). 1. Introduction During the past two decades, the small-particle research has became quite popular in various fields of chemistry and physics. The small particles, now we call nanostructured materials, are having interesting properties. Metallic nanoparticles represent a class of materials that are increasingly receiving attention as important starting points for the generation of micro-and nanostructures. These particles are under active research because they posses interesting physical properties differing considerably from that of the bulk phase. It has small sizes and high surface/volume ratio. Sliver nanoparticles have received considerable attention due to their attractive physical and chemical properties. Metallic sliver colloids were first prepared more than a century ago. Ag nanoparticles can be synthesized using various methods, such as chemical, electrochemical, γ-radiation, photochemical, and laser ablation. The most popular preparation of Ag colloids is chemical reduction of sliver salts by sodium borohydride of sodium citrate. This preparation is simple, but the great care must be exercised to make stable and reproducible colloids. The purity of water and reagents and cleanliness of the glassware are critical parameters. Solution temperature, concentrations of the metal slat and reducing agent, and reaction time influence particle size. Controlling size and shape of metal nanoparticles remains a challenge. The size-induced properties of nanoparticles enable the development of new applications or the addition of flexibility to existing systems, in many areas, such as catalysis, optics, microelectronics, and textiles. Antimicrobial effect of sliver nanoparticles on textiles has already been shown by various researchers [1–3]. Wool fiber, known for its lightness, softness, warmness, and smoothness, is known as a natural clothing material. Because wool is mainly composed of keratin, the outermost part of the fiber is the cuticle cell, of which

References

[1]  K. Patel, S. Kapoor, D. P. Dave, and T. Mukherjee, “Synthesis of nanosized silver colloids by microwave dielectric heating,” Journal of Chemical Sciences, vol. 117, no. 1, pp. 53–60, 2005.
[2]  L. Razafimahefa, S. Chlebicki, I. Vroman, and E. Devaux, “Effect of nanoclays on the dyeability of polypropylene nanocomposite fibres,” Coloration Technology, vol. 124, no. 2, pp. 86–91, 2008.
[3]  M. Radetic, V. llic, V. Vodnik et al., “Multifunctional properties of polyester fabrics modified by corona discharge/air RF plasma and colloidal TiO2 nanoparticles,” Polymers for Advanced Technologies, vol. 19, no. 12, pp. 1816–1821, 2008.
[4]  J. Cegarra, P. Puente, and J. Gacén, “Influence of wool bleaching with hydrogen peroxide on dyeing with CI Acid Blue 80,” Coloration Technology, vol. 121, no. 1, pp. 21–24, 2005.
[5]  J. A. Maclaren and B. Milligan, Wool Science: The Chemical Reactivity of the Fibre, vol. 122, Science Press, Marrickville, Australia; Coloration Technology, Millington, Tenn, USA, 1981.
[6]  J. Cegarra, J. Gacen, and M. Caro, “Optimization of the conventional bleaching of wool with hydrogen peroxide,” The Journal of the Society of Dyers and Colourist, vol. 94, pp. 85–90, 1978.
[7]  J. Gacen and D. Cayuela, “Comparison of wool bleaching with hydrogen peroxide in alkaline and acidic media,” Journal of the Society of Dyers and Colourists, vol. 116, no. 1, pp. 13–15, 2000.
[8]  X. Liu, C. J. Hurren, L. J. Wang, and X. G. Wang, “Effects of bleaching and dyeing on the quality of alpaca tops and yarns,” Fibers and Polymers, vol. 5, no. 2, pp. 128–133, 2004.
[9]  J. R. Barone, W. F. Schmidt, and N. T. Gregoire, “Extrusion of feather keratin,” Journal of Applied Polymer Science, vol. 100, no. 2, pp. 1432–1442, 2006.
[10]  J. R. Barone, W. F. Schmidt, and C. F. E. Liebner, “Thermally processed keratin films,” Journal of Applied Polymer Science, vol. 97, no. 4, pp. 1644–1651, 2005.
[11]  K. Katoh, M. Shibayama, T. Tanabe, and K. Yamauchi, “Preparation and properties of keratin-poly(vinyl alcohol) blend fiber,” Journal of Applied Polymer Science, vol. 91, no. 2, pp. 756–762, 2004.
[12]  S. Novak, S. Kobe, and P. McGuiness, “The effect of chemically bonded organic surface layers on the behaviour of fine powders,” Powder Technology, vol. 139, no. 2, pp. 140–147, 2004.
[13]  W. Xu, W. Cui, W. Li, and W. Guo, “Development and characterizations of super-fine wool powder,” Powder Technology, vol. 140, no. 1-2, pp. 136–140, 2004.
[14]  X. Wang, W. Xu, and G. Ke, “Preparation and dyeing of superfine down-powder/viscose blend film,” Fibers and Polymers, vol. 7, no. 3, pp. 250–254, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133