全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Theoretical and Experimental Aspects of the Corrosivity of Simulated Soil Solutions

DOI: 10.5402/2012/103715

Full-Text   Cite this paper   Add to My Lib

Abstract:

Corrosion of buried steel pipe is a permanent engineering problem and, albeit the counter measures against degradation, when the corrosion process takes place, the damage has costly impact. In order to study the corrosion behavior of pipelines, it is possible to use actual soil extracts or simulated soil solutions. The extract is much related to specific sites and consequently too strict to permit a general understanding. The simulated soil presents, as advantage, its inorganic characteristic and easy preparation. In this paper, we present some theoretical results concerning the chemical equilibria of NS1, NS2, NS3, and NS4 simulated soil solutions. Besides, we have studied the effect of the above four media in corrosion behavior and polarization curves were performed for an API 5L X65 steel. The theoretical findings show that each ionic concentration varies for a 6–12 pH range. The experimental data suggested that the corrosion currents decrease as high is the pH and increase as high is the chloride content. Notwithstanding these facts, for multielectrolyte solutions, a simple correlation with a given ion is not straightforward but the complementary approaches used here give useful insights. 1. Introduction Carbon steels of buried pipelines are susceptible to degradation by soil corrosivity. Therefore, this situation causes worldwide safety and economy concerns. The uses of coating and cathodic protection are the standard procedures. However, during in-service period, this coating can suffer localized failures and the steel is exposed to a corrosive environment. Generally, the degradation occurs as transgranular or intergranular stress corrosion cracking or even as hydrogen embrittlement in carbon dioxide environment because of mechanical stress. Few works are devoted to investigate corrosion processes caused by aqueous solutions without carbon dioxide. In this sense, marked reductions in area were observed near corrosion potentials of API 5L X65 when performed in slow strain rate test [1]. This fact shows that, even without CO2, the corrosion behavior close to free potential is related to stress corrosion cracking. To study the corrosivity of soil environments by ordinary electrochemical methods, two media are frequently used—extract solution from soil samples and simulated ones. The first option is very complex because it can contain, besides inorganic species, organic chemicals and even bacteria. Albeit their high correlation with the site where the pipe is buried, its use is not applied everywhere precisely because of inherent local

References

[1]  R. N. Parkins, W. K. Blanchard Jr, and B. S. Delanty, “Transgranular stress corrosion cracking of high-pressure pipelines in contact with solutions of near neutral pH,” Corrosion, vol. 50, no. 5, pp. 394–408, 1994.
[2]  H. B. Xue and Y. F. Cheng, “Electrochemical corrosion behavior of X80 pipeline steel in a near-neutral pH solution,” Materials and Corrosion, vol. 61, no. 9, pp. 756–761, 2010.
[3]  Z. Liu, G. Zhai, X. Li, and C. Du, “Effect of deteriorated microstructures on stress corrosion cracking of X70 pipeline steel in acidic soil environment,” Journal of University of Science and Technology Beijing, vol. 15, no. 6, pp. 707–713, 2008.
[4]  P. Liang, C. W. Du, X. G. Li, X. Chen, and Z. liang, “Effect of hydrogen on the stress corrosion cracking behavior of X80 pipeline steel in Ku'erle soil simulated solution,” International Journal of Minerals, Metallurgy and Materials, vol. 16, no. 4, pp. 407–413, 2009.
[5]  W. Sun, S. Ne?i?, and R. C. Woollam, “The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit,” Corrosion Science, vol. 51, no. 6, pp. 1273–1276, 2009.
[6]  G. A. Zhang and Y. F. Cheng, “On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production,” Corrosion Science, vol. 51, no. 1, pp. 87–94, 2009.
[7]  R. N. Parkins and S. Zhou, “The stress corrosion cracking of C-Mn steel in CO2-HCO3--CO32- solutions. II: electrochemical and other data,” Corrosion Science, vol. 39, no. 1, pp. 175–191, 1997.
[8]  B. R. Linter and G. T. Burstein, “Reactions of pipeline steels in carbon dioxide solutions,” Corrosion Science, vol. 41, no. 1, pp. 117–139, 1999.
[9]  I. V. Glinkina, V. A. Durov, and G. A. Mel'nitchenko, “Modelling of electrolyte mixtures with application to chemical equilibria in mixtures—prototypes of blood's plasma and calcification of soft tissues,” Journal of Molecular Liquids, vol. 110, no. 1–3, pp. 63–67, 2004.
[10]  H. R. Yeager and R. W. Dutton, “Improvement in norm-reducing Newton methods for circuit simulation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 5, pp. 538–546, 1989.
[11]  E. Ngoya, J. Roussel, and J. J. Obregon, “Newton-Raphson iteration speed-up algorithm for the solution of nonlinear circuit equations in general-purpose CAD programs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 16, no. 6, pp. 638–644, 1997.
[12]  M. Stern and A. L. Geary, “Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves,” Journal of the Electrochemical Society, vol. 104, no. 1, pp. 56–63, 1957.
[13]  M. Karagianni and A. Avranas, “The effect of deaeration on the surface tension of water and some other liquids,” Colloids and Surfaces A, vol. 335, no. 1–3, pp. 168–173, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133