全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enzymatic Carbon Dioxide Capture

DOI: 10.5402/2012/753687

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the past decade, the capture of anthropic carbonic dioxide and its storage or transformation have emerged as major tasks to achieve, in order to control the increasing atmospheric temperature of our planet. One possibility rests on the use of carbonic anhydrase enzymes, which have been long known to accelerate the hydration of neutral aqueous CO2 molecules to ionic bicarbonate species. In this paper, the principle underlying the use of these enzymes is summarized. Their main characteristics, including their structure and catalysis kinetics, are presented. A special section is next devoted to the main types of CO2 capture reactors under development, to possibly use these enzymes industrially. Finally, the possible application of carbonic anhydrases to directly store the captured CO2 as inert solid carbonates deserves a review presented in a final section. 1. Introduction One of the main problems our world is presently facing, concerns the capture of anthropic carbon dioxide rejected in the atmosphere by human activities. This gas is considered as one of the main atmospheric components responsible for a greenhouse effect and an increase of the earth atmosphere temperature [1, 2], with many unwanted consequences, including the development of infectious diseases [3]. According to a report by the International Panel on Climate Change (IPCC) on the earth climate evolution, dating from 2007, the release of this gas in the atmosphere has increased by 80% from 1970 to 2004 and it accounted for 76.7% of the “Greenhouse Effects Gases” in 2004 [4]. An international agreement termed the “Kyoto Protocol,” established by the United Nations Framework Convention on Climate Change, was initially signed in 1997 by 37 countries in order to reduce greenhouse gas (GHG) emissions [5]. This treaty was enforced in 2005 and the number of countries who ratified the convention increased to 191 in 2011. The target was to reduce the CO2 emission by an amount depending on the country by comparison with a defined basis (8% in Europe, 7% in USA), over the five-year period 2008–2012. Several methods are being developed or studied for this purpose [6, 7] and progress is being followed by the International Energy Agency (IEA) of the Organization for Economic Co-operation and Development (OECD) [8]. A general review was also published in a book chapter by Muradov [9]. Amongst them, one group of technology is proposing to use enzymes of the carbonic anhydrase type. The specificity of these enzymes is to catalyze the reversible transformation of neutral aqueous CO2 molecules, termed

References

[1]  C. D. Keeling, T. P. Whorf, M. Wahlen, and J. Van Der Plicht, “Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980,” Nature, vol. 375, no. 6533, pp. 666–670, 1995.
[2]  M. R. Raupach, G. Marland, P. Ciais et al., “Global and regional drivers of accelerating CO2 emissions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 24, pp. 10288–10293, 2007.
[3]  A. J. McMichael, R. E. Woodruff, and S. Hales, “Climate change and human health: present and future risks,” The Lancet, vol. 367, no. 9513, pp. 859–869, 2006.
[4]  Core Writing Team, IPCC, “Climate change 2007: synthesis report,” in Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, R. K. Pachauri and A. Reisinger, Eds., p. 104, IPCC, Geneva, Switzerland, 2007.
[5]  United Nations Framework Convention on Climate Change (UNFCCC), Kyoto Protocol Reference Manuel on Accounting of Emissions and Assigned Amounts, 2008, http://unfccc.int/2860.php.
[6]  M. M. Maroto-Valer, D. J. Fauth, M. E. Kuchta, Y. Zhang, and J. M. Andrésen, “Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration,” Fuel Processing Technology, vol. 86, no. 14-15, pp. 1627–1645, 2005.
[7]  M. Abu-Khader, “Recent progress in CO2 capture/sequestration: a review,” Energy Sources, Part A, vol. 28, no. 14, pp. 1261–1279, 2006.
[8]  International Energy Agency, Policy Strategy for Carbon Capture and Storage, OECD/IEA, Paris, France, 2012, http://www.iea.org/publications/freepublications.
[9]  N. Z. Muradov, “Fossil fuel decarbonization: in the quest for clean and lasting fossil energy,” in Carbon-Neutral Fuels and Energy Carriers, N. Z. Muradov and T. N. Veziroglu, Eds., pp. 667–786, CRC Press, Taylor and Francis, 2012.
[10]  A. Y. Shekh, K. Krishnamurthi, S. N. Mudliar et al., “Recent advancements in carbonic anhydrase driven processes for CO2 sequestration: minireview,” Critical Reviews in Environmental Science and Technology, vol. 42, no. 14, pp. 1419–1440, 2012.
[11]  N. Favre, Captage enzymatique de dioxyde de carbone [Ph.D. thesis], Report no. 109-2011, Université Claude Bernard-Lyon 1, Lyon, France, 2011.
[12]  M. Ramdin, T. W. de Loos, and T. J. H. Vlugt, “State-of-the-Art of CO2 Capture with Ionic Liquids,” Industrial & Engineering Chemistry Research, vol. 51, pp. 8149–8177, 2012.
[13]  Working Group III of the Intergovernmental Panel on Climate Change, IPCC, “IPCC special report on carbon dioxide capture and storage,” B. O. Metz, H. Davidson, C. de Coninck, M. Loos, and L. A. Meyer, Eds., p. 442, Cambridge University Press, New York, NY, USA, 2005.
[14]  G. S. Goff and G. T. Rochelle, “Monoethanolamine degradation: O2 mass transfer effects under CO2 capture conditions,” Industrial and Engineering Chemistry Research, vol. 43, no. 20, pp. 6400–6408, 2004.
[15]  A. Kishimoto, Y. Kansha, C. Fushimi, and A. Tsutsumi, “Exergy recuperative CO2 gas separation in pre-combustion capture,” Clean Techn Environ Policy, vol. 14, pp. 465–474, 2012.
[16]  C. A. Griffith, D. A. Dzombak, and G. V. Lowry, “Physical and chemical characteristics of potential seal strata in regions considered for demonstrating geological saline CO2 sequestration,” Environmental Earth Sciences, vol. 64, no. 4, pp. 925–948, 2011.
[17]  K. Z. House, B. Altundas, C. F. Harvey, and D. P. Schrag, “The immobility of CO2 in marine sediments beneath 1500 meters of water,” ChemSusChem, vol. 3, no. 8, pp. 905–912, 2010.
[18]  T. Sakakura, J. C. Choi, and H. Yasuda, “Transformation of carbon dioxide,” Chemical Reviews, vol. 107, no. 6, pp. 2365–2387, 2007.
[19]  Y. Amao and T. Watanabe, “Photochemical and enzymatic methanol synthesis from HCO3- by dehydrogenases using water-soluble zinc porphyrin in aqueous media,” Applied Catalysis B, vol. 86, no. 3-4, pp. 109–113, 2009.
[20]  E. Ono and J. L. Cuello, “Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar collector,” Biosystems Engineering, vol. 95, no. 4, pp. 597–606, 2006.
[21]  P. Kaladharan, S. Veena, and E. Vivekanandan, “Carbon sequestration by a few marine algae: observation and projection,” Journal of the Marine Biological Association of India, vol. 51, pp. 107–110, 2009.
[22]  R. Morgan, “Photobioreactor and method for processing polluted air,” From PCT International Application, WO 2008097845 A1 20080814, 2008.
[23]  M. Aresta, A. Dibenedetto, and G. Barberio, “Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study,” Fuel Processing Technology, vol. 86, no. 14-15, pp. 1679–1693, 2005.
[24]  K. Skj?nes, P. Lindblad, and J. Muller, “BioCO2—a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products,” Biomolecular Engineering, vol. 24, no. 4, pp. 405–413, 2007.
[25]  J. Ge, R. M. Cowan, C. Tu, M. L. McGregor, and M. C. Trachtenberg, “Enzyme-based CO2 capture for advanced life support,” Life Support & Biosphere Science, vol. 8, no. 3-4, pp. 181–189, 2002.
[26]  L. W. Diamond and N. N. Akinfiev, “Solubility of CO2 in water from -1.5 to 100°C and from 0.1 to 100?MPa: evaluation of literature data and thermodynamic modelling,” Fluid Phase Equilibria, vol. 208, no. 1-2, pp. 265–290, 2003.
[27]  J. J. Carroll, J. D. Slupsky, and A. E. Mather, “The solubility of carbon dioxide in water at low pressure,” Journal of Physical and Chemical Reference Data, vol. 20, pp. 1201–1209, 1991.
[28]  R. Crovetto, “Evaluation of solubility data of the system CO2-H2O from 273?K to the critical point of water,” Journal of Physical and Chemical Reference Data, vol. 20, pp. 575–589, 1991.
[29]  Y. Pocker and D. W. Bjorkquist, “Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in H2O and D2O. Acid-base and metal ion catalysis,” Journal of the American Chemical Society, vol. 99, no. 20, pp. 6537–6543, 1977.
[30]  G. M. Bond, J. Stringer, D. K. Brandvold, F. A. Simsek, M. G. Medina, and G. Egeland, “Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase,” Energy and Fuels, vol. 15, no. 2, pp. 309–316, 2001.
[31]  C. S. Tautermann, A. F. Voegele, T. Loerting et al., “Towards the experimental decomposition rate of carbonic acid (H2CO3) in aqueous solution,” Chemistry A European Journal, vol. 8, pp. 66–73, 2002.
[32]  B. H. Gibbons and J. T. Edsall, “Rate of hydration of carbon dioxide and dehydration of carbonic acid at ,” The Journal of Biological Chemistry, vol. 238, pp. 3502–3507, 1963.
[33]  G. T. Tsao, “The effect of carbonic anhydrase on carbon dioxide absorption,” Chemical Engineering Science, vol. 27, no. 8, pp. 1593–1600, 1972.
[34]  J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, W.H. Freeman and Company, 5th edition, 2002.
[35]  S. Lindskog and J. E. Coleman, “The catalytic mechanism of carbonic anhydrase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 70, no. 9, pp. 2505–2508, 1973.
[36]  L. Bao and M. C. Trachtenberg, “Facilitated transport of CO2 across a liquid membrane: comparing enzyme, amine, and alkaline,” Journal of Membrane Science, vol. 280, no. 1-2, pp. 330–334, 2006.
[37]  E. C. Webb, Enzyme Nomenclature, Academic Press, 1992, http://www.chem.qmw.ac.uk/iubmb.
[38]  K. S. Smith, C. Jakubzick, T. S. Whittam, and J. G. Ferry, “Carbonic anhydrase is an ancient enzyme widespread in prokaryotes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 26, pp. 15184–15189, 1999.
[39]  B. C. Tripp, K. Smith, and J. G. Ferry, “Carbonic anhydrase: new insights for an ancient enzyme,” The Journal of Biological Chemistry, vol. 276, no. 52, pp. 48615–48618, 2001.
[40]  N. Meldrum and F. J. W. Roughton, “Carbonic anhydrase: its preparation and properties,” The Journal of Physiology, vol. 80, pp. 113–142, 1933.
[41]  A. C. Neish, “Studies on chloroplasts. Their chemical composition and the distribution of certain metabolites between the chloroplasts and remainder of the leaf,” Biochemical Journal, vol. 33, pp. 300–3308, 1939.
[42]  D. Keilin and T. Mann, “Carbonic anhydrase,” Nature, vol. 144, no. 3644, pp. 442–443, 1939.
[43]  D. Keilin and T. Mann, “Carbonic anhydrase. Purification and nature of the enzyme,” Biochemical Journal, vol. 34, pp. 1163–1176, 1940.
[44]  R. S. Rowlett and D. N. Silverman, “Kinetics of the protonation of buffer and hydration of CO2 catalyzed by human carbonic anhydrase II,” Journal of the American Chemical Society, vol. 104, no. 24, pp. 6737–6741, 1982.
[45]  F. P. Veitch and L. C. Blankenship, “Carbonic anhydrase in bacteria,” Nature, vol. 197, no. 4862, pp. 76–77, 1963.
[46]  L. Adler, J. Brundell, S. O. Falkbring, and P. O. Nyman, “Carbonic anhydrase from Neisseria sicca, strain 6021 I. Bacterial growth and purification of the enzyme,” Biochimica et Biophysica Acta, vol. 284, no. 1, pp. 298–310, 1972.
[47]  M. B. Guilloton, J. J. Korte, A. F. Lamblin, J. A. Fuchs, and P. M. Anderson, “Carbonic anhydrase in Escherichia coli. A product of the cyn operon,” The Journal of Biological Chemistry, vol. 267, no. 6, pp. 3731–3734, 1992.
[48]  M. B. Guilloton, A. F. Lamblin, E. I. Kozliak et al., “A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli,” Journal of Bacteriology, vol. 175, no. 5, pp. 1443–1451, 1993.
[49]  J. F. Domsic and R. McKenna, “Sequestration of carbon dioxide by the hydrophobic pocket of the carbonic anhydrases,” Biochimica et Biophysica Acta, vol. 1804, no. 2, pp. 326–331, 2010.
[50]  C. T. Supuran, “Carbonic anhydrase inhibitors: possible anticancer drugs with a novel mechanism of action,” Drug Development Research, vol. 69, no. 6, pp. 297–303, 2008.
[51]  B. E. Alber and J. G. Ferry, “A carbonic anhydrase from the archaeon Methanosarcina thermophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 15, pp. 6909–6913, 1994.
[52]  S. Lindskog, “Structure and mechanism of Carbonic Anhydrase,” Pharmacology and Therapeutics, vol. 74, no. 1, pp. 1–20, 1997.
[53]  E. E. Rickli, S. A. Ghazanfar, B. H. Gibbons, and J. T. Edsall, “Carbonic anhydrase from human erythrocytes,” The Journal of Biological Chemistry, vol. 239, pp. 1065–1078, 1964.
[54]  G. P. Miscione, M. Stenta, D. Spinelli, E. Anders, and A. Bottoni, “New computational evidence for the catalytic mechanism of carbonic anhydrase,” Theoretical Chemistry Accounts, vol. 118, no. 1, pp. 193–201, 2007.
[55]  T. W. Lane and F. M. M. Morel, “Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii,” Plant Physiology, vol. 123, no. 1, pp. 345–352, 2000.
[56]  S. Heinhorst, E. B. Williams, F. Cai, C. D. Murin, J. M. Shively, and G. C. Cannon, “Characterization of the carboxysomal carbonic anhydrase CsoSCA from Halothiobacillus neapolitanus,” Journal of Bacteriology, vol. 188, no. 23, pp. 8087–8094, 2006.
[57]  T. W. Lane and F. M. M. Morel, “A biological function for cadmium in marine diatoms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 9, pp. 4627–4631, 2000.
[58]  C. T. Supuran and A. Scozzafava, “Carbonic anhydrases as targets for medicinal chemistry,” Bioorganic and Medicinal Chemistry, vol. 15, no. 13, pp. 4336–4350, 2007.
[59]  M. R. Sawaya, G. C. Cannon, S. Heinhorst et al., “The structure of β-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two,” The Journal of Biological Chemistry, vol. 281, no. 11, pp. 7546–7555, 2006.
[60]  S. Breton, “The cellular physiology of carbonic anhydrases,” Journal of the Pancreas, vol. 2, no. 4, supplement, pp. 159–164, 2001.
[61]  R. Ramanan, K. Kannan, N. Vinayagamoorthy, K. M. Ramkumar, S. D. Sivanesan, and T. Chakrabarti, “Purification and characterization of a novel plant-type carbonic anhydrase from Bacillus subtilis,” Biotechnology and Bioprocess Engineering, vol. 14, no. 1, pp. 32–37, 2009.
[62]  O. J. da Costa, L. Sala, G. P. Cerveira, and S. J. Kalil, “Purification of carbonic anhydrase from bovine erythrocytes and its application in the enzymatic capture of carbon dioxide,” Chemosphere, vol. 88, no. 2, pp. 255–259, 2012.
[63]  I. G. Kim, B. H. Jo, D. G. Kang, C. S. Kim, Y. S. Choi, and H. J. Cha, “Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase,” Chemosphere, vol. 87, no. 10, pp. 1091–1096, 2012.
[64]  M. C. Trachtenberg, “Novel enzyme compositions for removing carbon dioxide from a mixed gas,” U.S. Patent Application Publication US 20080003662 A1 2008010, 2008.
[65]  Z. Minic and P. D. Thongbam, “The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes,” Marine Drugs, vol. 9, no. 5, pp. 719–738, 2011.
[66]  Z. Liu, P. Bartlow, R. M. Dilmore et al., “Production, purification, and characterization of a fusion protein of carbonic anhydrase from Neisseria gonorrhoeae and cellulose binding domain from Clostridium thermocellum,” Biotechnology Progress, vol. 25, no. 1, pp. 68–74, 2009.
[67]  C. Thibaud-Erkey and H. Cordatos, “Post-combustion CO2 capture with biomimetic membrane,” Preprints of Symposia—American Chemical Society, Division of Fuel Chemistry, vol. 56, no. 1, pp. 232–233, 2011.
[68]  H. J. Kulik, S. E. Wong, E. Y. Lau et al., “Computational design of carbonic anhydrase mimics for carbon dioxide capture,” in Proceedings of the 240th ACS National Meeting, Boston, Mass, USA, August 2010.
[69]  K. M. Wilbur and N. G. Anderson, “Electrometric and colorimetric determination of carbonic anhydrase,” The Journal of Biological Chemistry, vol. 176, no. 1, pp. 147–154, 1948.
[70]  R. Brinkman, “The occurrence of carbonic anhydrase in lower marine animals,” The Journal of Physiology, vol. 80, pp. 171–173, 1933.
[71]  F. J. Philpot and J. S. L. Philpot, “CCCVI. A modified colorimetric estimation of carbonic anhydrase,” Biochemical Journal, vol. 30, pp. 2191–2193, 1936.
[72]  E. Ozdemir, “Biomimetic CO2 sequestration: 1. Immobilization of carbonic anhydrase within polyurethane foam,” Energy and Fuels, vol. 23, no. 11, pp. 5725–5730, 2009.
[73]  D. Voet, J. G. Voet, and G. Rousseau, Biochimie, De Boeck University, 2005.
[74]  F. Larachi, “Kinetic model for the reversible hydration of carbon dioxide catalyzed by human carbonic anhydrase II,” Industrial and Engineering Chemistry Research, vol. 49, no. 19, pp. 9095–9104, 2010.
[75]  C. T. Supuran, “Carbonic anhydrases—a overview,” Current Pharmaceutical Design, vol. 14, no. 7, pp. 603–614, 2008.
[76]  D. Whitford, Proteins: Structure and Function, John Wiley & Sons, 2005.
[77]  P. Mirjafari, K. Asghari, and N. Mahinpey, “Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes,” Industrial and Engineering Chemistry Research, vol. 46, no. 3, pp. 921–926, 2007.
[78]  J. H. Zhang, R. C. C. Qi, T. Chen et al., “Development of a carbon dioxide-capture assay in microtiter plate for aspartyl-β-hydroxylase,” Analytical Biochemistry, vol. 271, no. 2, pp. 137–142, 1999.
[79]  I. H. Segel, Enzyme Kinetics, John Wiley & Sons, 1993.
[80]  V. Henri, “Théorie générale de l’action de quelques diastases,” Comptes Rendus de l'Académie des Sciences, Paris, vol. 135, pp. 916–919, 1902.
[81]  V. Henri, Lois GénéraLes de L’Action des Diastases, Herman, Paris, France, 1903.
[82]  L. Michaelis and M. L. Menten, “Kinetics of invertase action,” Biochemistry Zeitshrift, vol. 49, pp. 333–369, 1913.
[83]  P. Saunders, S. Salmon, M. Borchert, and L. P. Lessard, “Modular membrane reactor and process for carbon dioxide extraction,” Novozymes, International Patent WO 2010/014774 A2, 2010.
[84]  J. Y. Gal, J. C. Bollinger, H. Tolosa, and N. Gache, “Calcium carbonate solubility: a reappraisal of scale formation and inhibition,” Talanta, vol. 43, no. 9, pp. 1497–1509, 1996.
[85]  R. Ramanan, K. Kannan, S. D. Sivanesan et al., “Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii,” World Journal of Microbiology and Biotechnology, vol. 25, no. 6, pp. 981–987, 2009.
[86]  A. Sharma and A. Bhattacharya, “Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains,” Journal of Molecular Catalysis B, vol. 67, no. 1-2, pp. 122–128, 2010.
[87]  A. F. Ghannam, W. Tsen, and R. S. Rowlett, “Activation parameters for the carbonic anhydrase II-catalyzed hydration of CO2,” The Journal of Biological Chemistry, vol. 261, no. 3, pp. 1164–1169, 1986.
[88]  B. Kanbar and E. Ozdemir, “Thermal stability of carbonic anhydrase immobilized within polyurethane foam,” Biotechnology Progress, vol. 26, no. 5, pp. 1474–1480, 2010.
[89]  R. A. Sheldon, “Enzyme immobilization: the quest for optimum performance,” Advanced Synthesis and Catalysis, vol. 349, no. 8-9, pp. 1289–1307, 2007.
[90]  O. Lacroix and F. Larachi, “Scrubber designs for enzyme-mediated capture of CO2,” Recent Patents on Chemical Engineering, vol. 1, no. 2, pp. 93–105, 2008.
[91]  S. Fradette and O. Ceperkovic, CO2 Solution Inc., “An improved carbon dioxide absorption solution”, PCT International Application, WO 2006089423 A1 20060831, 2006.
[92]  T. Hamilton, “Capturing Carbon with enzymes,” 2008, http://www.technologyreview.com/Energy/18217/.
[93]  CO2 Solution Company, Enzymatic power for carbon capture, “The process”, 2012, http://www.co2solutions.com/en/the-process.
[94]  C. Parent and F. Dutil, CO2 Solution Inc., “Triphasic bioreactor and process for gas effluent treatment”, International Patent WO 2004/007058 A1, 2004.
[95]  C. Parent, A. Barry, S. Fradette, and R. Lepine, CO2 Solution Inc., “Gas purification apparatus and process using biofiltration and enzymatic reactions” Canadian Patent CA 2554395 A1, 2006.
[96]  S. Fradette, A. Belzil, M. Dion, and R. Parent, “Enzymatic process and bioreactor using elongated structures for carbon dioxide capture treatments,” PCT International Application WO 2011054107 A1 20110512, 2011.
[97]  S. Bhattacharya, M. Schiavone, S. Chakrabarti, and S. K. Bhattacharya, “CO2 hydration by immobilized carbonic anhydrase,” Biotechnology and Applied Biochemistry, vol. 38, no. 2, pp. 111–117, 2003.
[98]  Reardon and P. John, “Advanced low energy enzyme catalyzed carbonate solvents for CO2 capture-exploring operating conditions,” Preprints of Symposia—American Chemical Society, Division of Fuel Chemistry, vol. 56, no. 1, pp. 224–225, 2011.
[99]  M. Su and V. Haritos, “Use of enzyme catalysts in CO2 post combustion capture (PCC) processes,” PCT International Application WO 2010045689 A1 20100429, 2010.
[100]  N. J. M. C. Penders-Van Elk, P. W. J. Derks, G. F. Versteeg, and S. Fradette, “Enzyme enhanced carbon dioxide capture and desorption processes,” CT International Application WO 2012055035 A1 20120503, 2012.
[101]  N. J. M. C. Penders-van Elk, P. W. J. Derks, S. Fradette, and G. F. Versteeg, “Kinetics of absorption of carbon dioxide in aqueous MDEA solutions with carbonic anhydrase at 298?K,” International Journal of Greenhouse Gas Control, vol. 9, pp. 385–392, 2012.
[102]  I. Iliuta and F. Larachi, “New scrubber concept for catalytic CO2 hydration by immobilized carbonic anhydrase II & in-situ inhibitor removal in three-phase monolith slurry reactor,” Separation and Purification Technol, vol. 86, pp. 199–214, 2012.
[103]  F. Larachi, O. Lacroix, and B. P. A. Grandjean, “Carbon dioxide hydration by immobilized carbonic anhydrase in Robinson-Mahoney and packed-bed scrubbers,” Chemical Engineering Science, vol. 73, pp. 99–115, 2012.
[104]  S. Salmon, J. Holmes, and P. Saunders, “Ultrasound-assisted regeneration for CO2 capture processes,” IP.com Journal, vol. 10, no. 2B, article 12, 2010.
[105]  R. M. Cowan, J. J. Ge, Y. J. Qin, M. L. McGregor, and M. C. Trachtenberg, “CO2 capture by means of an enzyme-based reactor,” Annals of the New York Academy of Sciences, vol. 984, pp. 453–469, 2003.
[106]  Y. J. Lin, S. Datta, M. P. Henry et al., “An electrochemical process for energy efficient capture of CO2 from coal flue gas,” Preprints of Symposia—American Chemical Society, Division of Fuel Chemistry, vol. 56, no. 1, pp. 311–312, 2011.
[107]  W. J. Ward and W. L. Robb, “Carbon dioxide-oxygen separation: facilitated transport of carbon dioxide across a liquid film,” Science, vol. 156, no. 3781, pp. 1481–1484, 1967.
[108]  S. R. Suchdeo and J. S. Schultz, “Mass transfer of CO2 across membranes: facilitation in the presence of bicarbonate ion and the enzyme carbonic anhydrase,” Biochimica et Biophysica Acta, vol. 352, no. 3, pp. 412–440, 1974.
[109]  H. Matsuyama, M. Teramoto, and K. Iwai, “Development of a new functional cation-exchange membrane and its application to facilitated transport of CO2,” Journal of Membrane Science, vol. 93, no. 3, pp. 237–244, 1994.
[110]  H. Matsuyama, A. Terada, T. Nakagawara, Y. Kitamura, and M. Teramoto, “Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane,” Journal of Membrane Science, vol. 163, no. 2, pp. 221–227, 1999.
[111]  M. C. Trachtenberg, R. M. Cowan, D. A. Smith et al., “Membrane-based, enzyme-facilitated, efficient carbon dioxide capture,” Energy Procedia, vol. 1, pp. 353–360, 2009.
[112]  M. C. Trachtenberg, D. A. Smith, R. M. Cowan, and X. Wang, “Flue gas CO2 capture by means of a biomimetic facilitated transport membrane,” in Proceedings of the AIChE Spring Annual Meeting, Houston, Tex, USA, 2007, http://www.carbozyme.us/pub_abstracts.shtml.
[113]  Y. T. Zhang, T. T. Zhi, L. Zhang, H. Huang, and H. L. Chen, “Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite,” Polymer, vol. 50, no. 24, pp. 5693–5700, 2009.
[114]  Y. T. Zhang, L. Zhang, H. L. Chen, and H. M. Zhang, “Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors,” Chemical Engineering Science, vol. 65, no. 10, pp. 3199–3207, 2010.
[115]  Y.-T. Zhang, X.-G. Dai, G.-H. Xu et al., “Modeling of CO2 mass transport across a hollow fiber membrane reactor filled with immobilized enzyme,” AIChE Journal, vol. 58, pp. 2069–2077, 2012.
[116]  A. L. Crumbliss, K. L. McLachlan, J. P. O'Daly, and R. W. Henkens, “Preparation and activity of carbonic anhydrase immobilized on porous silica beads and graphite rods,” Biotechnology and Bioengineering, vol. 31, no. 8, pp. 796–801, 1988.
[117]  N. Liu, G. M. Bond, A. Abel, B. J. McPherson, and J. Stringer, “Biomimetic sequestration of CO2 in carbonate form: role of produced waters and other brines,” Fuel Processing Technology, vol. 86, no. 14-15, pp. 1615–1625, 2005.
[118]  B. Krajewska, “Application of chitin- and chitosan-based materials for enzyme immobilizations: a review,” Enzyme and Microbial Technology, vol. 35, no. 2-3, pp. 126–139, 2004.
[119]  S. Hosseinkhani and M. Nemat-Gorgani, “Partial unfolding of carbonic anhydrase provides a method for its immobilization on hydrophobic adsorbents and protects it against irreversible thermoinactivation,” Enzyme and Microbial Technology, vol. 33, no. 2-3, pp. 179–184, 2003.
[120]  R. Dilmore, C. Griffith, Z. Liu et al., “Carbonic anhydrase-facilitated CO2 absorption with polyacrylamide buffering bead capture,” International Journal of Greenhouse Gas Control, vol. 3, no. 4, pp. 401–410, 2009.
[121]  C. Prabhu, S. Wanjari, S. Gawande et al., “Immobilization of carbonic anhydrase enriched microorganism on biopolymer based materials,” Journal of Molecular Catalysis B, vol. 60, no. 1-2, pp. 13–21, 2009.
[122]  A. Sharma, A. Bhattacharya, and A. Shrivastava, “Biomimetic CO2 sequestration using purified carbonic anhydrase from indigenous bacterial strains immobilized on biopolymeric materials,” Enzyme and Microbial Technology, vol. 48, no. 4-5, pp. 416–426, 2011.
[123]  C. Prabhu, S. Wanjari, A. Puri et al., “Region-specific bacterial carbonic anhydrase for biomimetic sequestration of carbon dioxide,” Energy and Fuels, vol. 25, no. 3, pp. 1327–1332, 2011.
[124]  S. Wanjari, C. Prabhu, R. Yadav, T. Satyanarayana, N. Labhsetwar, and S. Rayalu, “Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction,” Process Biochemistry, vol. 46, no. 4, pp. 1010–1018, 2011.
[125]  S. Wanjari, C. Prabhu, T. Satyanarayana, A. Vinu, and S. Rayalu, “Immobilization of carbonic anhydrase on mesoporous aluminosilicate for carbonation reaction,” Microporous Mesoporous Mater, vol. 160, pp. 151–158, 2012.
[126]  C. Prabhu, A. Valechha, S. Wanjari et al., “Carbon composite beads for immobilization of carbonic anhydrase,” Journal of Molecular Catalysis B, vol. 71, no. 1-2, pp. 71–78, 2011.
[127]  A. Belzil and C. Parent, “Qualification methods of chemical immobilizations of an enzyme on solid support,” Biochemistry and Cell Biology, vol. 83, no. 1, pp. 70–77, 2005.
[128]  M. N. Bennani, D. Tichit, F. Figueras, and S. Abouarnadasse, “Synthèse et caractérisation d'hydrotalcites Mg-Al. Application à l'éldolisation de l'acétone,” Journal of Chemical Physics, vol. 96, pp. 498–509, 1999.
[129]  “Hydrotalcite,” http://webmineral.com/data/Hydrotalcite.shtml.
[130]  S. Zhang, Y. Lu, M. Rostab-Abadi, and A. Jones, “Immobilization of a rbonic anhydrase enzyme onto flame spray pyrolysis-based silica nanoparticles for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture,” in Proceedings of the 243rd ACS National Meeting & Exposition, San Diego, Calif, USA, March 2012.
[131]  J. S. Lee, K. J. Schilling, and P. A. Johnson, “Fabrication of polymer ated magnetic Fe3O4 nanocomposites with magnetic stirring method for the immobilization of enzymes,” in Proceedings of the 242nd ACS National Meeting & Exposition, Denver, Colo, USA, August 2011.
[132]  R. Yadav, S. Wanjari, C. Prabhu et al., “Immobilized carbonic anhydrase for the biomimetic carbonation reaction,” Energy and Fuels, vol. 24, no. 11, pp. 6198–6207, 2010.
[133]  R. Yadav, T. Satyanarayanan, S. Kotwal, and S. Rayalu, “Enhanced carbonation reaction using chitosan-based carbonic anhydrase nanoparticles,” Current Science, vol. 100, no. 4, pp. 520–524, 2011.
[134]  M. Vinoba, D. H. Kim, K. S. Lim, S. K. Jeong, S. W. Lee, and M. Alagar, “Biomimetic sequestration of CO2 and reformation to CaCO3 using bovine carbonic anhydrase immobilized on SBA-15,” Energy and Fuels, vol. 25, no. 1, pp. 438–445, 2011.
[135]  M. Vinoba, M. Bhagiyalakshmi, S. K. Jeong, Y. I. Yoon, and S. C. Nam, “Immobilization of carbonic anhydrase on spherical SBA-15 for hydration and sequestration of CO2,” Colloids and Surfaces, B, vol. 90, pp. 91–96, 2012.
[136]  M. Vinoba, M. Bhagiyalakshmi, S. K. Jeong, Y. I. Yoon, and S. C. Nam, “Carbonic anhydrase conjugated to nanosilver immobilized onto mesoporous SBA-15 for sequestration of CO2,” Journal of Molecular Catalysis B, vol. 75, pp. 60–67, 2012.
[137]  M. Vinoba, K. S. Lim, S. K. Lee, S. K. Jeong, and M. Alagar, “Immobilization of human carbonic anhydrase on gold nanoparticles assembled onto amine/thiol-functionalized mesoporous SBA-15 for biomimetic sequestration of CO2,” Langmuir, vol. 27, no. 10, pp. 6227–6234, 2011.
[138]  M. Vinoba, M. Bhagiyalakshmi, S. K. Jeong, Y. I. Yoon, and S. C. Nam, “Capture and sequestration of CO2 by human carbonic anhydrase covalently immobilized onto amine-functionalized SBA-15,” The Journal of Physical Chemistry C, vol. 115, no. 41, pp. 20209–20216, 2011.
[139]  L. L. Wood, F. J. Hartdegen, and P. A. Hahn, “Enzymes bound to polyurethane,” US Patent US 4343834, 1982.
[140]  N. Favre and A. C. Pierre, “Synthesis and behaviour of hybrid polymer-silica membranes made by sol gel process with adsorbed carbonic anhydrase enzyme, in the capture of CO2,” Journal of Sol-Gel Science and Technology, vol. 60, pp. 177–188, 2011.
[141]  A. C. Pierre and G. M. Pajonk, “Chemistry of aerogels and their applications,” Chemical Reviews, vol. 102, no. 11, pp. 4243–4265, 2002.
[142]  N. Favre, Y. Ahmad, and A. C. Pierre, “Biomaterials obtained by gelation of silica precursor with CO2 saturated water containing a carbonic anhydrase enzyme,” Journal of Sol-Gel Science and Technology, vol. 58, no. 2, pp. 442–451, 2011.
[143]  G. W. Scherer and C. J. Brinker, Sol-Gel Science: Hydrolysis and Condensation of Silicon Alkoxides, Academic Press, 1990.
[144]  N. Kr?ger, R. Deutzmann, and M. Sumper, “Polycationic peptides from diatom biosilica that direct silica nanosphere formation,” Science, vol. 286, no. 5442, pp. 1129–1132, 1999.
[145]  Y. Jiang, Y. Zhang, H. Wu et al., “Protamine-templated biomimetic hybrid capsules: efficient and stable carrier for enzyme encapsulation,” Chemistry of Materials, vol. 20, no. 3, pp. 1041–1048, 2008.
[146]  J. N. Cha, K. Shimizu, Y. Zhou et al., “Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 361–365, 1999.
[147]  H. R. Luckarift, M. B. Dickerson, K. H. Sandhage, and J. C. Spain, “Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania,” Small, vol. 2, no. 5, pp. 640–643, 2006.
[148]  V. Abbate, A. R. Bassindale, K. F. Brandstadt, R. Lawson, and P. G. Taylor, “Enzyme mediated silicon-oxygen bond formation; The use of Rhizopus oryzae lipase, lysozyme and phytase under mild conditions,” Dalton Transactions, vol. 39, no. 39, pp. 9361–9368, 2010.
[149]  M. Frampton, A. Vawda, J. Fletcher, and P. M. Zelisko, “Enzyme-mediated sol-gel processing of alkoxysilanes,” Chemical Communications, no. 43, pp. 5544–5546, 2008.
[150]  P. Buisson, H. El Rassy, S. Maury, and A. C. Pierre, “Biocatalytic gelation of silica in the presence of a lipase,” Journal of Sol-Gel Science and Technology, vol. 27, no. 3, pp. 373–379, 2003.
[151]  K. Z. House, C. H. House, M. J. Aziz, and D. P. Schrag, “Carbon dioxide capture and related processes,” International Patent WO 2008/018928A2, 2008.
[152]  R. Pérez-López, G. Montes-Hernandez, J. M. Nieto, F. Renard, and L. Charlet, “Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere,” Applied Geochemistry, vol. 23, no. 8, pp. 2292–2300, 2008.
[153]  G. Montes-Hernandez, R. Pérez-López, F. Renard, J. M. Nieto, and L. Charlet, “Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash,” Journal of Hazardous Materials, vol. 161, no. 2-3, pp. 1347–1354, 2009.
[154]  A. Santos, J. A. Toledo-Fernández, R. Mendoza-Serna et al., “Chemically active silica aerogel—wollastonite composites for CO2 fixation by carbonation reactions,” Industrial and Engineering Chemistry Research, vol. 46, no. 1, pp. 103–107, 2007.
[155]  W. Li, W. Li, B. Li, and Z. Bai, “Electrolysis and heat pretreatment methods to promote CO2 sequestration by mineral carbonation,” Chemical Engineering Research and Design, vol. 87, no. 2, pp. 210–215, 2009.
[156]  W. J. J. Huijgen, R. N. J. Comans, and G. J. Witkamp, “Cost evaluation of CO2 sequestration by aqueous mineral carbonation,” Energy Conversion and Management, vol. 48, no. 7, pp. 1923–1935, 2007.
[157]  Y. Soong, D. L. Fauth, B. H. Howard et al., “CO2 sequestration with brine solution and fly ashes,” Energy Conversion and Management, vol. 47, no. 13-14, pp. 1676–1685, 2006.
[158]  G. Walenta, V. Morin, A. C. Pierre, and L. Christ, “Cementitious compositions containing enzymes for trapping CO2 into carbonates and/or bicarbonates,” PCT International Application. WO 2011048335 A1 20110428, 2011.
[159]  X. X. Wang, H. Fu, D. M. Du et al., “The comparison of pKa determination between carbonic acid and formic acid and its application to prediction of the hydration numbers,” Chemical Physics Letters, vol. 460, no. 1–3, pp. 339–342, 2008.
[160]  W. Dreybrodt, L. Eisenlohr, B. Madry, and S. Ringer, “Precipitation kinetics of calcite in the system CaCO3-H2O-CO2: the conversion to CO2 by the slow process H++HCO3-→ CO2+H2O as a rate limiting step,” Geochimica et Cosmochimica Acta, vol. 61, no. 18, pp. 3897–3904, 1997.
[161]  M. L. Druckenmiller and M. M. Maroto-Valer, “Carbon sequestration using brine of adjusted pH to form mineral carbonates,” Fuel Processing Technology, vol. 86, no. 14-15, pp. 1599–1614, 2005.
[162]  W. Li, L. Liu, W. Chen, L. Yu, W. Li, and H. Yu, “Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors,” Process Biochemistry, vol. 45, no. 6, pp. 1017–1021, 2010.
[163]  D. H. Kim, M. Vinoba, W. S. Shin, K. S. Lim, S. K. Jeong, and S. H. Kim, “Biomimetic sequestration of carbon dioxide using an enzyme extracted from oyster shell,” Korean Journal of Chemical Engineering, vol. 28, no. 10, pp. 2081–2085, 2011.
[164]  N. Favre, M. L. Christ, and A. C. Pierre, “Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate,” Journal of Molecular Catalysis B, vol. 60, no. 3-4, pp. 163–170, 2009.
[165]  S. R. Kamhi, “On the structure of vaterite CaCO3,” Acta Cristallographica, vol. 16, pp. 770–772, 1963.
[166]  D. L. Graf, “Crystallographic tables for rhombohedral carbonates,” American Mineralogist, vol. 46, pp. 1283–1316, 1961.
[167]  A. C. Pierre, Introduction to Sol-Gel Processing, Colloidal particles and Sols, chapter 3, Kluwer Academic, Boston, Mass, USA, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133