The performance of catalyst for glycerol reforming has been investigated in fixed-bed reactor using careful tailoring of the operational conditions. In this paper, a commercial Engelhard catalyst has been sized and compared to gas product distribution versus catalyst size, water-to-carbon ratio, and stability of the catalyst system. catalysts of three sizes ( , , and ?mm) are evaluated using glycerol: water mixture at to produce 2?L?H2?g?1?cat?h?1. The results indicate that ?mm size pellet is showing minimum coking and maintaining same level of conversion even after several hours of reforming activity. Whereas studies on and ?mm pellets indicate that carbon formation is affecting the reforming activity. Under accelerated aging studies, with 1?:?9 molar ratio of glycerol to water, 3?mg?carbon?g?1?cat?h?1 was generated in 20 cycles, whereas 1?:?18 feed produced only 1.5?mg?carbon?g?1?cat?h?1 during the same cycles of operation. The catalysts were characterized before and after evaluation by X-ray diffraction (XRD), BET surface area, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDAX), CHNS analysis, transmission electron microscopy (TEM), and X-ray photo electron spectroscopy (XPS). 1. Introduction The search for alternative energy sources is becoming an important aspect in the present scenario due to diminishing petroleum reserves and increased environmental pollution. Hydrogen production from biomass has great interest because of the potential application in fuel cells. Significant amount of glycerol is produced as a by-product in biodiesel production by transesterification of vegetable oils, which are available at low cost in large quantity from renewable raw materials. With increased production of biodiesel, an excess amount of glycerol (C3H8O3) is expected in the world market [1]. At present, glycerol is used in many applications including personal care, food, oral care, tobacco, polymer, and pharmaceutical applications. Besides converting glycerol into value-added chemicals [2–4], hydrogen production through reforming is alternative route [5–12]. Aqueous phase reforming of oxygenated hydrocarbons is extensively studied by the Luo et al. and Shabaker et al. [9, 13], and glycerol steam reforming is studied by Czenik et al. [14], Pompeo et al. [10], and Adhikari et al. [6, 15] over nickel-based catalysts and noble metal catalysts on different supports [16–19]. Chiodo et al. reported carbon formation of 2–6?mg?carbon?g?1?cat?h?1 by steam reforming of glycerol by Ni over MgO, CeO2, Al2O3, and Ru/Al2O3 catalysts for 20?h
References
[1]
BIODIESEL 2020, A Global Market Survey, Feedstock Trends and Forecasts, Emerging Markets Online, 2nd edition, 2008.
[2]
J. N. Chheda, G. W. Huber, and J. A. Dumesic, “Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals,” Angewandte Chemie—International Edition, vol. 46, no. 38, pp. 7164–7183, 2007.
[3]
M. Balaraju, V. Rekha, P. S. Sai Prasad, R. B. N. Prasad, and N. Lingaiah, “Selective hydrogenolysis of glycerol to 1, 2 propanediol over Cu-ZnO catalysts,” Catalysis Letters, vol. 126, no. 1-2, pp. 119–124, 2008.
[4]
C. H. Zhou, J. N. Beltramini, Y. X. Fan, and G. Q. Lu, “Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals,” Chemical Society Reviews, vol. 37, no. 3, pp. 527–549, 2008.
[5]
A. J. Byrd, K. K. Pant, and R. B. Gupta, “Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst,” Fuel, vol. 87, no. 13-14, pp. 2956–2960, 2008.
[6]
S. Adhikari, S. Fernando, and A. Haryanto, “A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glycerin,” Energy and Fuels, vol. 21, no. 4, pp. 2306–2310, 2007.
[7]
K. Lehnert and P. Claus, “Influence of Pt particle size and support type on the aqueous-phase reforming of glycerol,” Catalysis Communications, vol. 9, no. 15, pp. 2543–2546, 2008.
[8]
S. M. Swami and M. A. Abraham, “Integrated catalytic process for conversion of biomass to hydrogen,” Energy and Fuels, vol. 20, no. 6, pp. 2616–2622, 2006.
[9]
N. Luo, X. Fu, F. Cao, T. Xiao, and P. P. Edwards, “Glycerol aqueous phase reforming for hydrogen generation over Pt catalyst—effect of catalyst composition and reaction conditions,” Fuel, vol. 87, no. 17-18, pp. 3483–3489, 2008.
[10]
F. Pompeo, G. F. Santori, and N. N. Nichio, “Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts,” Catalysis Today, vol. 172, pp. 183–188, 2011.
[11]
G. Wen, Y. Xu, H. Ma, Z. Xu, and Z. Tian, “Production of hydrogen by aqueous-phase reforming of glycerol,” International Journal of Hydrogen Energy, vol. 33, no. 22, pp. 6657–6666, 2008.
[12]
B. Dou, V. Dupont, P. T. Williams, H. Chen, and Y. Ding, “Thermogravimetric kinetics of crude glycerol,” Bioresource Technology, vol. 100, no. 9, pp. 2613–2620, 2009.
[13]
J. W. Shabaker, G. W. Huber, and J. A. Dumesic, “Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts,” Journal of Catalysis, vol. 222, no. 1, pp. 180–191, 2004.
[14]
S. Czernik, R. French, C. Feik, and E. Chornet, “Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes,” Industrial and Engineering Chemistry Research, vol. 41, no. 17, pp. 4209–4215, 2002.
[15]
S. Adhikari, S. Fernando, and A. Haryanto, “Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts,” Catalysis Today, vol. 129, no. 3-4, pp. 355–364, 2007.
[16]
P. D. Vaidya and A. E. Rodrigues, “Glycerol reforming for hydrogen production: a review,” Chemical Engineering and Technology, vol. 32, no. 10, pp. 1463–1469, 2009.
[17]
V. Nichele, M. Signoretto, F. Menegazzo et al., “Glycerol steam reforming for hydrogen production: design of Ni supported catalysts,” Applied Catalysis B, vol. 111-112, pp. 225–232, 2012.
[18]
B. Zhang, X. Tang, Y. Li, Y. Xu, and W. Shen, “Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts,” International Journal of Hydrogen Energy, vol. 32, no. 13, pp. 2367–2373, 2007.
[19]
R. R. Soares, D. A. Simonetti, and J. A. Dumesic, “Glycerol as a source for fuels and chemicals by low-temperature catalytic processing,” Angewandte Chemie—International Edition, vol. 45, no. 24, pp. 3982–3985, 2006.
[20]
V. Chiodo, S. Freni, A. Galvagno, N. Mondello, and F. Frusteri, “Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen,” Applied Catalysis A, vol. 381, no. 1-2, pp. 1–7, 2010.
[21]
S. Adhikari, S. D. Fernando, S. D. F. To, R. M. Bricka, P. H. Steele, and A. Haryanto, “Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts,” Energy and Fuels, vol. 22, no. 2, pp. 1220–1226, 2008.
[22]
S. Adhikari, S. Fernando, S. R. Gwaltney et al., “A thermodynamic analysis of hydrogen production by steam reforming of glycerol,” International Journal of Hydrogen Energy, vol. 32, no. 14, pp. 2875–2880, 2007.
[23]
J. Ashok, S. Naveen Kumar, A. Venugopal, V. Durga Kumari, and M. Subrahmanyam, “COX-free H2 production via catalytic decomposition of CH4 over Ni supported on zeolite catalysts,” Journal of Power Sources, vol. 164, no. 2, pp. 809–814, 2007.
[24]
C. K. Cheng, S. Y. Foo, and A. A. Adesina, “Carbon deposition on bimetallic Co-Ni/Al2O3 catalyst during steam reforming of glycerol,” Catalysis Today, vol. 164, no. 1, pp. 268–274, 2011.
[25]
S. Tomiyama, R. Takahashi, S. Sato, T. Sodesawa, and S. Yoshida, “Preparation of Ni/SiO2 catalyst with high thermal stability for CO2-reforming of CH4,” Applied Catalysis A, vol. 241, no. 1-2, pp. 349–361, 2003.
[26]
T. Yamauchi, Y. Tsukahara, K. Yamada, T. Sakata, and Y. Wada, “Nucleation and growth of magnetic Ni-Co (Core-Shell) nanoparticles in a one-pot reaction under microwave irradiation,” Chemistry of Materials, vol. 23, no. 1, pp. 75–84, 2011.
[27]
M. Sanles-Sobrido, M. Ba?obre-López, V. Salgueiri?o et al., “Tailoring the magnetic properties of nickel nanoshells through controlled chemical growth,” Journal of Materials Chemistry, vol. 20, no. 35, pp. 7360–7365, 2010.
[28]
T. Sakamoto, K. Asazawa, K. Yamada, and H. Tanaka, “Study of Pt-free anode catalysts for anion exchange membrane fuel cells,” Catalysis Today, vol. 164, no. 1, pp. 181–185, 2011.
[29]
C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Eds., Handbook of X-Ray Photoelectron Spectroscopy, PerkineElmer Corporation, 1979.
[30]
L. F. Bobadilla, A. álvarez, M. I. Domínguez et al., “Influence of the shape of Ni catalysts in the glycerol steam reforming,” Applied Catalysis B, vol. 123-124, pp. 379–390, 2012.
[31]
M. L. Dieuzeide and N. Amadeo, “Thermodynamic analysis of Glycerol steam reforming,” Chemical Engineering and Technology, vol. 33, no. 1, pp. 89–96, 2010.
[32]
I. N. Buffoni, F. Pompeo, G. F. Santori, and N. N. Nichio, “Nickel catalysts applied in steam reforming of glycerol for hydrogen production,” Catalysis Communications, vol. 10, no. 13, pp. 1656–1660, 2009.
[33]
M. Slinn, K. Kendall, C. Mallon, and J. Andrews, “Steam reforming of biodiesel by-product to make renewable hydrogen,” Bioresource Technology, vol. 99, no. 13, pp. 5851–5858, 2008.
[34]
B. Dou, V. Dupont, G. Rickett et al., “Hydrogen production by sorption-enhanced steam reforming of glycerol,” Bioresource Technology, vol. 100, no. 14, pp. 3540–3547, 2009.
[35]
V. Durga Kumari, K. Venkateswarlu, M. Subrahmanyam et al., “H2 production activities at Indian Institute of Chemical Technology,” in International Conference on Hydrogen Production, The Korean H2 and New Energy Society, Seoul, Korea, June 2012.