Euglena gracilis is a unicellular, free-living flagellate that inhabits various freshwater environments. Our research shows that exposure to UV-C light can trigger some form of programmed cell death. Cells exposed to UV-C light underwent delayed changes that were strongly reminiscent of apoptosis in mammalian cells, including cell shrinkage and DNA fragmentation that produced the characteristic ladder pattern commonly seen with apoptosis. DNA fragmentation could be inhibited by pretreatment with Z-VAD-FMK and also independently induced by exposure to staurosporine. In addition, Euglena possess proteins that cross-reacted with antibodies raised against human caspases 3 and 9. Given that Euglena are extremely easy to culture and represent a lineage positioned near the base of the eukaryotic tree, they will be an excellent model system for comparative analyses with apoptotic-like death processes in other eukaryotic microbes. 1. Introduction Apoptosis is a form of controlled cell death that is essential to animal life. This process plays a key role in embryological development, the homeostatic maintenance of organ systems, and the immune system [1, 2]. Given that apoptosis is tightly linked to so many crucial cell-cell interactions, it is not surprising that it is universally distributed among metazoans. It has been well documented in mammals, insects, and nematodes, and there is good evidence for its existence in cnidarians [3, 4] and sponges [5, 6]. In fact, both sponges and cnidarians possess caspases, the proteases that mediate apoptosis, and members of the Bcl-2 superfamily. This would suggest that the apoptotic pathway was already well developed by the time metazoans appeared. Because apoptosis would clearly impart an advantage in a multicellular context, allowing for the homeostatic control of cell numbers, it was originally believed to have coevolved with the appearance of metazoa. However, for more than a decade now, an apoptotic-like death process has been reported in a variety of unicellular organisms [7, 8]. Among these organisms, the process has been best described in Saccharomyces cerevisiae [9], where many of the characteristic cellular and biochemical changes associated with apoptosis [1, 2] have been detected: alterations in cell morphology (cell shrinkage), activation of a class of caspase-like proteases, externalization of membrane phosphatidylserine, condensation of the nucleus, and DNA fragmentation. Among the protozoa, a programmed cell death process has been most extensively characterized in the group Euglenozoa, specifically the
References
[1]
A. Lawen, “Apoptosis—an introduction,” BioEssays, vol. 25, no. 9, pp. 888–896, 2003.
[2]
C. Potten and J. Wilson, Apoptosis: The Life and Death of Cells, Cambridge University Press, Cambridge, UK, 2004.
[3]
M. Cikala, B. Wilm, E. Hobmayer, A. B?ttger, and C. N. David, “Identification of caspases and apoptosis in the simple metazoan Hydra,” Current Biology, vol. 9, no. 17, pp. 959–962, 1999.
[4]
A. B?ttger and O. Alexandrova, “Programmed cell death in Hydra,” Seminars in Cancer Biology, vol. 17, no. 2, pp. 134–146, 2007.
[5]
M. Wiens, A. Krasko, C. I. Müller, and W. E. G. Müller, “Molecular evolution of apoptotic pathways: cloning of key domains from sponges (Bcl-2 homology domains and death domains) and their phylogenetic relationships,” Journal of Molecular Evolution, vol. 50, no. 6, pp. 520–531, 2000.
[6]
M. Wiens, A. Krasko, S. Perovic, and W. E. G. Müller, “Caspase-mediated apoptosis in sponges: cloning and function of the phylogenetic oldest apoptotic proteases from metazoa,” Biochimica et Biophysica Acta, vol. 1593, no. 2-3, pp. 179–189, 2003.
[7]
A. V. Gordeeva, Y. A. Labas, and R. A. Zvyagilskaya, “Apoptosis in unicellular organisms: mechanisms and evolution,” Biochemistry, vol. 69, no. 10, pp. 1055–1066, 2004.
[8]
M. Deponte, “Programmed cell death in protists,” Biochimica et Biophysica Acta, vol. 1783, no. 7, pp. 1396–1405, 2008.
[9]
F. Madeo, E. Herker, S. Wissing, H. Jungwirth, T. Eisenberg, and K. U. Fr?hlich, “Apoptosis in yeast,” Current Opinion in Microbiology, vol. 7, pp. 655–660, 2004.
[10]
A. Debrabant, N. Lee, S. Bertholet, R. Duncan, and H. L. Nakhasi, “Programmed cell death in trypanosomatids and other unicellular organisms,” International Journal for Parasitology, vol. 33, no. 3, pp. 257–267, 2003.
[11]
E. L. Ridgley, Z. H. Xiong, and L. Ruben, “Reactive oxygen species activate a Ca2+-dependent cell death pathway in the unicellular organism Trypanosoma brucei brucei,” Biochemical Journal, vol. 340, no. 1, pp. 33–40, 1999.
[12]
S. B. Mukherjee, M. Das, G. Sudhandiran, and C. Shaha, “Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes,” The Journal of Biological Chemistry, vol. 277, no. 27, pp. 24717–24727, 2002.
[13]
A. G. B. Simpson, E. E. Gill, H. A. Callahan, R. W. Litaker, and A. J. Roger, “Early evolution within kinetoplastids (Euglenozoa), and the late emergence of trypanosomatids,” Protist, vol. 155, no. 4, pp. 407–422, 2004.
[14]
G. Li, J. A. Bush, and V. C. Ho, “Effect of retinoic acid on apoptosis and DNA repair in human keratinocytes after UVB irradiation,” Journal of Cutaneous Medicine and Surgery, vol. 4, no. 1, pp. 2–7, 2000.
[15]
E. B. Sorensen and P. W. Mesner, “IgH-2 cells: a reptilian model for apoptotic studies,” Comparative Biochemistry and Physiology, vol. 140, no. 1, pp. 163–170, 2005.
[16]
M. A. Menze, G. Fortner, S. Nag, and S. C. Hand, “Mechanisms of apoptosis in crustacea: what conditions induce versus suppress cell death?” Apoptosis, vol. 15, no. 3, pp. 293–312, 2010.
[17]
L. Stergiou, R. Eberhard, K. Doukoumetzidis, and M. O. Hengartner, “NER and HR pathways act sequentially to promote UV-C-induced germ cell apoptosis in Caenorhabditis elegans,” Cell Death and Differentiation, vol. 18, no. 5, pp. 897–906, 2011.
[18]
W. E. G. Müller, H. Ushijima, R. Batel et al., “Novel mechanism for the radiation-induced bystander effect: nitric oxide and ethylene determine the response in sponge cells,” Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, vol. 597, no. 1-2, pp. 62–72, 2006.
[19]
R. Del Carratore, C. Della Croce, M. Simili, E. Taccini, M. Scavuzzo, and S. Sbrana, “Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S. cerevisiae,” Mutation Research, vol. 513, no. 1-2, pp. 183–191, 2002.
[20]
S. Moharikar, J. S. D'Souza, A. B. Kulkarni, and B. J. Rao, “Apoptotic-like cell death pathway is induced in unicellular chlorophyte Chlamydomonas reinhardtii (Chlorophyceae) cells following UV irradiation: detection and functional analyses,” Journal of Phycology, vol. 42, no. 2, pp. 423–433, 2006.
[21]
C. Jiménez, J. M. Capasso, C. L. Edelstein et al., “Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase,” Journal of Experimental Botany, vol. 60, no. 3, pp. 815–828, 2009.
[22]
S. P. Singh, D. P. H?der, and R. P. Sinha, “Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies,” Ageing Research Reviews, vol. 9, no. 2, pp. 79–90, 2010.
[23]
R. Scheuerlein, S. Treml, B. Thar, U. K. Tirlapur, and D. P. Hader, “Evidence for UV-B-induced DNA degradation in Euglena gracilis mediated by activation of metal-dependent nucleases,” Journal of Photochemistry and Photobiology B, vol. 31, no. 3, pp. 113–123, 1995.
[24]
M. J. Bumbulis, G. Wroblewski, D. McKean, and D. R. Setzer, “Genetic analysis of Xenopus transcription factor IIIA,” Journal of Molecular Biology, vol. 284, no. 5, pp. 1307–1322, 1998.
[25]
N. J. Jardine and J. L. Leaver, “The fractionation of histones isolated from Euglena gracilis,” Biochemical Journal, vol. 169, no. 1, pp. 103–111, 1978.
[26]
S. Delpech, M. H. Bre, A. Mazen, et al., “Electron microscopic visualization of nucleosomal organization in B12 starved and control Euglena chromatin,” Cell Biology International Reports, vol. 6, no. 2, pp. 197–203, 1982.
[27]
M. Segovia, L. Haramaty, J. A. Berges, and P. G. Falkowski, “Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans,” Plant Physiology, vol. 132, no. 1, pp. 99–105, 2003.
[28]
G. Preta and B. Fadeel, “Scythe cleavage during Fas (APO-1)-and staurosporine-mediated apoptosis,” FEBS Letters, vol. 586, no. 6, pp. 747–752, 2012.
[29]
D. M. Kovacs, R. Mancini, J. Henderson et al., “Staurosporine-induced activation of caspase-3 is potentiated by presenilin 1 familial Alzheimer's disease mutations in human neuroglioma cells,” Journal of Neurochemistry, vol. 73, no. 6, pp. 2278–2285, 1999.
[30]
H. J. Chae, J. S. Kang, J. O. Byun et al., “Molecular mechanism of staurosporine-induced apoptosis in osteoblasts,” Pharmacological Research, vol. 42, no. 4, pp. 373–381, 2000.