全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identification of PDZ Domain Containing Proteins Interacting with 1.2 and PMCA4b

DOI: 10.1155/2013/265182

Full-Text   Cite this paper   Add to My Lib

Abstract:

PDZ (PSD-95/Disc large/Zonula occludens-1) protein interaction domains bind to cytoplasmic protein C-termini of transmembrane proteins. In order to identify new interaction partners of the voltage-gated L-type Ca2+ channel 1.2 and the plasma membrane Ca2+ ATPase 4b (PMCA4b), we used PDZ domain arrays probing for 124 PDZ domains. We confirmed this by GST pull-downs and immunoprecipitations. In PDZ arrays, strongest interactions with 1.2 and PMCA4b were found for the PDZ domains of SAP-102, MAST-205, MAGI-1, MAGI-2, MAGI-3, and ZO-1. We observed binding of the 1.2 C-terminus to PDZ domains of NHERF1/2, Mint-2, and CASK. PMCA4b was observed to interact with Mint-2 and its known interactions with Chapsyn-110 and CASK were confirmed. Furthermore, we validated interaction of 1.2 and PMCA4b with NHERF1/2, CASK, MAST-205 and MAGI-3 via immunoprecipitation. We also verified the interaction of 1.2 and nNOS and hypothesized that nNOS overexpression might reduce Ca2+ influx through 1.2. To address this, we measured Ca2+ currents in HEK 293 cells co-expressing 1.2 and nNOS and observed reduced voltage-dependent 1.2 activation. Taken together, we conclude that 1.2 and PMCA4b bind promiscuously to various PDZ domains, and that our data provides the basis for further investigation of the physiological consequences of these interactions. 1. Introduction PDZ domains are protein interaction motifs that play a crucial role in cellular signaling and bind specifically to cytoplasmatic carboxyl (C-) terminal sequences of their interacting proteins, which often belong to transmembrane receptor and ion channel families. This motif typically spans 90–100 amino acids and was first found in three polypeptides: the mammalian protein postsynaptic density-95 (PSD-95), the Drosophila melanogaster epithelial tumor suppressor protein Discs Large (Dlg), and the mammalian epithelial tight junction protein Zonula occludens-1 (ZO-1) [1–7]. Typical ligands for PDZ domains are the high voltage-activated L-type calcium channel (LTCC) Cav1.2 and the plasma membrane calcium ATPase (PMCA) 4b, both essential for calcium homeostasis in excitable and nonexcitable cells. Voltage-gated calcium channels (Cav) allow the cellular entry of calcium ( ) ions and initiate muscle excitation-contraction coupling, neurotransmitter release, gene expression, or hormone secretion. Cav1.2 channels play a major role for the voltage-dependent influx. Its overexpression augmented influx into cardiomyocytes, thereby increasing cardiac contractile force [8, 9]. Further studies demonstrated the importance of Cav1.2 in

References

[1]  K. O. Cho, C. A. Hunt, and M. B. Kennedy, “The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein,” Neuron, vol. 9, no. 5, pp. 929–942, 1992.
[2]  A. S. Fanning and J. M. Anderson, “Protein modules as organizers of membrane structure,” Current Opinion in Cell Biology, vol. 11, no. 4, pp. 432–439, 1999.
[3]  M. B. Kennedy, “Origin of PDZ (DHR, GLGF) domains,” Trends in Biochemical Sciences, vol. 20, no. 9, p. 350, 1995.
[4]  E. Kim, M. Niethammer, A. Rothschild, Y. N. Jan, and M. Sheng, “Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases,” Nature, vol. 378, no. 6552, pp. 85–88, 1995.
[5]  H. C. Kornau, P. H. Seeburg, and M. B. Kennedy, “Interaction of ion channels and receptors with PDZ domain proteins,” Current Opinion in Neurobiology, vol. 7, no. 3, pp. 368–373, 1997.
[6]  C. Nourry, S. G. Grant, and J. P. Borg, “PDZ domain proteins: plug and play!,” Science's STKE, vol. 2003, no. 179, p. RE7, 2003.
[7]  D. F. Woods and P. J. Bryant, “ZO-1, DlgA and PSD-95/SAP90: homologous proteins in tight, septate and synaptic cell junctions,” Mechanisms of Development, vol. 44, no. 2-3, pp. 85–89, 1993.
[8]  J. N. Muth, H. Yamaguchi, G. Mikala et al., “Cardiac-specific overexpression of the α1 subunit of the L-type voltage-dependent Ca2+ channel in transgenic mice. Loss of isoproterenol-induced contraction,” Journal of Biological Chemistry, vol. 274, no. 31, pp. 21503–21506, 1999.
[9]  L.-S. Song, A. Guia, J. N. Muth et al., “Ca2+ signaling in cardiac myocytes overexpressing the α1 subunit of L-type Ca2+ channel,” Circulation Research, vol. 90, no. 2, pp. 174–181, 2002.
[10]  C. Seisenberger, V. Specht, A. Welling et al., “Functional embryonic cardiomyocytes after disruption of the L-type α1C ( 1.2) calcium channel gene in the mouse,” Journal of Biological Chemistry, vol. 275, no. 50, pp. 39193–39199, 2000.
[11]  M. Xu, A. Welling, S. Paparisto, F. Hofmann, and N. Klugbauer, “Enhanced expression of L-type 1.3 calcium channels in murine embryonic hearts from 1.2-deficient Mice,” Journal of Biological Chemistry, vol. 278, no. 42, pp. 40837–40841, 2003.
[12]  I. Splawski, K. W. Timothy, N. Decher et al., “Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 23, pp. 8089–8096, 2005.
[13]  I. Splawski, K. W. Timothy, L. M. Sharpe et al., “ 1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism,” Cell, vol. 119, no. 1, pp. 19–31, 2004.
[14]  M. L. Garcia and E. E. Strehler, “Plasma membrane calcium ATPases as critical regulators of calcium homeostasis during neuronal cell function,” Frontiers in Bioscience, vol. 4, pp. D869–D882, 1999.
[15]  G. R. Monteith and B. D. Roufogalis, “The plasma membrane calcium pump—a physiological perspective on its regulation,” Cell Calcium, vol. 18, no. 6, pp. 459–470, 1995.
[16]  J. T. Penniston and A. Enyedi, “Modulation of the plasma membrane Ca2+ pump,” Journal of Membrane Biology, vol. 165, no. 2, pp. 101–109, 1998.
[17]  E. E. Strehler and D. A. Zacharias, “Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps,” Physiological Reviews, vol. 81, no. 1, pp. 21–50, 2001.
[18]  S. J. DeMarco and E. E. Strehler, “Plasma membrane Ca2+-atpase isoforms 2b and 4b interact promiscuously and selectively with members of the membrane-associated guanylate kinase family of PDZ (PSD95/Dlg/ZO-1) domain-containing proteins,” Journal of Biological Chemistry, vol. 276, no. 24, pp. 21594–21600, 2001.
[19]  T. Fujimoto, “Calcium pump of the plasma membrane is localized in caveolae,” Journal of Cell Biology, vol. 120, no. 5, pp. 1147–1158, 1993.
[20]  A. Hammes, S. Oberdorf-Maass, T. Rother et al., “Overexpression of the sarcolemmal calcium pump in the myocardium of transgenic rats,” Circulation Research, vol. 83, no. 9, pp. 877–888, 1998.
[21]  B. Razani, S. E. Woodman, and M. P. Lisanti, “Caveolae: from cell biology to animal physiology,” Pharmacological Reviews, vol. 54, no. 3, pp. 431–467, 2002.
[22]  P. W. Shaul and R. G. W. Anderson, “Role of plasmalemmal caveolae in signal transduction,” American Journal of Physiology, vol. 275, no. 5, pp. L843–L851, 1998.
[23]  K. Schuh, S. Uldrijan, S. Gambaryan, N. Roethlein, and L. Neyses, “Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK,” Journal of Biological Chemistry, vol. 278, no. 11, pp. 9778–9783, 2003.
[24]  S. N. Gomperts, “Clustering membrane proteins: it's all coming together with the PSD-95/SAP90 protein family,” Cell, vol. 84, no. 5, pp. 659–662, 1996.
[25]  L. A. Lasky, N. J. Skelton, and S. S. Siduh, “PDZ domains: intracellular mediators of carboxy-terminal protein recognition and scaffolding,” in Modular Protein Domains, G. Cesareni, M. Gimona, M. Sudol, and M. Yaffe, Eds., pp. 257–273, WILEY-VCH Verlag GmbH & Co, Weinheim, Germany, 2005.
[26]  J. M. Montgomery, P. L. Zamorano, and C. C. Garner, “MAGUKs in synapse assembly and function: an emerging view,” Cellular and Molecular Life Sciences, vol. 61, no. 7-8, pp. 911–929, 2004.
[27]  G. M. Goellner, S. J. DeMarco, and E. E. Strehler, “Characterization of PISP, a novel single-PDZ protein that binds to all plasma membrane Ca2+-ATPase b-splice variants,” Annals of the New York Academy of Sciences, vol. 986, pp. 461–471, 2003.
[28]  S. J. Demarco, M. C. Chicka, and E. E. Strehler, “Plasma membrane Ca2+ ATPase isoform 2b interacts preferentially with Na+/H+ exchanger regulatory factor 2 in apical plasma membranes,” Journal of Biological Chemistry, vol. 277, no. 12, pp. 10506–10511, 2002.
[29]  K. Schuh, S. Uldrijan, M. Telkamp, N. R?thlein, and L. Neyses, “The plasmamembrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I,” Journal of Cell Biology, vol. 155, no. 2, pp. 201–205, 2001.
[30]  A. L. Armesilla, J. C. Williams, M. H. Buch et al., “Novel functional interaction between the plasma membrane Ca2+ pump 4b and the proapoptotic tumor suppressor Ras-associated factor 1 (RASSF1),” Journal of Biological Chemistry, vol. 279, no. 30, pp. 31318–31328, 2004.
[31]  M. H. Bucht, A. Pickard, A. Rodriguez et al., “The sarcolemmal calcium pump inhibits the calcineurin/nuclear factor of activated T-cell pathway via interaction with the calcineurin A catalytic subunit,” Journal of Biological Chemistry, vol. 280, no. 33, pp. 29479–29487, 2005.
[32]  J. P. Williams, T. Stewart, B. Li, R. Mulloy, D. Dimova, and M. Classon, “The retinoblastoma protein is required for Ras-induced oncogenic transformation,” Molecular and Cellular Biology, vol. 26, no. 4, pp. 1170–1182, 2006.
[33]  U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970.
[34]  C. Seisenberger, A. Welling, A. Schuster, and F. Hofmann, “Two stable cell lines for screening of calcium channel blockers,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 352, no. 6, pp. 662–669, 1995.
[35]  X. Zong, J. Schreieck, G. Mehrke et al., “On the regulation of the expressed L-type calcium channel by cAMP-dependent phosphorylation,” Pflugers Archiv, vol. 430, no. 3, pp. 340–347, 1995.
[36]  S. Hjertén, “A new method for preparation of agarose for gel electrophoresis,” Biochimica et Biophysica Acta, vol. 62, no. 3, pp. 445–449, 1962.
[37]  Y. Hata, S. Butz, and T. C. Südhof, “CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins,” Journal of Neuroscience, vol. 16, no. 8, pp. 2488–2494, 1996.
[38]  E. J. Weinman, D. Steplock, K. Tate, R. A. Hall, R. F. Spurney, and S. Shenolikar, “Structure-function of recombinant Na/H exchanger regulatory factor (NHE- RF),” Journal of Clinical Investigation, vol. 101, no. 10, pp. 2199–2206, 1998.
[39]  H. Nakanishi, H. Obaishi, A. Satoh et al., “Neurabin: a novel neural tissue-specific actin filament-binding protein involved in neurite formation,” Journal of Cell Biology, vol. 139, no. 4, pp. 951–961, 1997.
[40]  J. D. Wood, J. Yuan, R. L. Margolis et al., “Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins,” Molecular and Cellular Neurosciences, vol. 11, no. 3, pp. 149–160, 1998.
[41]  Y. Wu, D. Dowbenko, S. Spencer et al., “Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase,” Journal of Biological Chemistry, vol. 275, no. 28, pp. 21477–21485, 2000.
[42]  J. M. Anerson, B. R. Stevenson, L. A. Jesaitis, D. A. Goodenough, and M. S. Mooseker, “Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells,” Journal of Cell Biology, vol. 106, no. 4, pp. 1141–1149, 1988.
[43]  B. R. Stevenson, J. D. Siliciano, and M. S. Mooseker, “Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (Zonula Occludens) in a variety of epithelia,” Journal of Cell Biology, vol. 103, no. 3, pp. 755–766, 1986.
[44]  P. D. Walden and N. J. Cowan, “A novel 205-kilodalton testis-specific serine/threonine protein kinase associated with microtubules of the spermatid manchette,” Molecular and Cellular Biology, vol. 13, no. 12, pp. 7625–7635, 1993.
[45]  D. Wang, J. L. Hye, D. S. Cooper et al., “Coexpression of MAST205 inhibits the activity of Na+/H+ exchanger NHE3,” American Journal of Physiology, vol. 290, no. 2, pp. F428–F437, 2006.
[46]  E. Kim, S. J. DeMarco, S. M. Marfatia, A. H. Chishti, M. Sheng, and E. E. Strehler, “Plasma membrane Ca2+ ATPase isoform 4B binds to membrane-associated guanylate kinase (MAGUK) proteins via their PDZ (PSD-95/Dlg/ZO-1) domains,” Journal of Biological Chemistry, vol. 273, no. 3, pp. 1591–1595, 1998.
[47]  A. S. Fanning and J. M. Anderson, “Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions,” Annals of the New York Academy of Sciences, vol. 1165, pp. 113–120, 2009.
[48]  J. L. Franklin, K. Yoshiura, P. J. Dempsey et al., “Identification of MAGI-3 as a transforming growth factor-α tail binding protein,” Experimental Cell Research, vol. 303, no. 2, pp. 457–470, 2005.
[49]  R. P. Laura, S. Ross, H. Koeppen, and L. A. Lasky, “MAGI-1: a widely expressed, alternatively spliced tight junction protein,” Experimental Cell Research, vol. 275, no. 2, pp. 155–170, 2002.
[50]  J. Iida, S. Hirabayashi, Y. Sato, and Y. Hata, “Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin,” Molecular and Cellular Neuroscience, vol. 27, no. 4, pp. 497–508, 2004.
[51]  J. He, M. Bellini, H. Inuzuka et al., “Proteomic analysis of β1-adrenergic receptor interactions with PDZ scaffold proteins,” Journal of Biological Chemistry, vol. 281, no. 5, pp. 2820–2827, 2006.
[52]  J. Xu, M. Paquet, A. G. Lau, J. D. Wood, C. A. Ross, and R. A. Hall, “beta 1-adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95,” Journal of Biological Chemistry, vol. 276, no. 44, pp. 41310–41317, 2001.
[53]  X. Wu, K. Hepner, S. Castelino-Prabhu et al., “Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 4233–4238, 2000.
[54]  K. Adamsky, K. Arnold, H. Sabanay, and E. Peles, “Junctional protein MAGI-3 interacts with receptor tyrosine phosphatase β (RPTPβ) and tyrosine-phosphorylated proteins,” Journal of Cell Science, vol. 116, no. 7, pp. 1279–1289, 2003.
[55]  M. Okamoto and T. C. Südhof, “Mints, munc18-interacting proteins in synaptic vesicle exocytosis,” Journal of Biological Chemistry, vol. 272, no. 50, pp. 31459–31464, 1997.
[56]  M. Okamoto and T. C. Südhof, “Mint 3: a ubiquitous mint isoform that does not bind to munc18-1 or -2,” European Journal of Cell Biology, vol. 77, no. 3, pp. 161–165, 1998.
[57]  B. Rogelj, J. C. Mitchell, C. C. J. Miller, and D. M. McLoughlin, “The X11/Mint family of adaptor proteins,” Brain Research Reviews, vol. 52, no. 2, pp. 305–315, 2006.
[58]  S. Ferro-Novick and R. Jahn, “Vesicle fusion from yeast to man,” Nature, vol. 370, no. 6486, pp. 191–193, 1994.
[59]  K. Hill, Y. Li, M. Bennett et al., “Munc18 interacting proteins: ADP-ribosylation factor-dependent coat proteins that regulate the traffic of β-Alzheimer's precursor protein,” Journal of Biological Chemistry, vol. 278, no. 38, pp. 36032–36040, 2003.
[60]  T. F. J. Martin, “Stages of regulated exocytosis,” Trends in Cell Biology, vol. 7, no. 7, pp. 271–276, 1997.
[61]  T. C. Sudhof, “The synaptic vesicle cycle: a cascade of protein-protein interactions,” Nature, vol. 375, no. 6533, pp. 645–653, 1995.
[62]  R. S. Zucker, “Exocytosis: a molecular and physiological perspective,” Neuron, vol. 17, no. 6, pp. 1049–1055, 1996.
[63]  S. Butz, M. Okamoto, and T. C. Südhof, “A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain,” Cell, vol. 94, no. 6, pp. 773–782, 1998.
[64]  M. Valiente, A. Andrés-Pons, B. Gomar et al., “Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases,” Journal of Biological Chemistry, vol. 280, no. 32, pp. 28936–28943, 2005.
[65]  D. Atasoy, S. Schoch, A. Ho et al., “Deletion of CASK in mice is lethal and impairs synaptic function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 7, pp. 2525–2530, 2007.
[66]  M. Irie, Y. Hata, M. Takeuchi et al., “Binding of neuroligins to PSD-95,” Science, vol. 277, no. 5331, pp. 1511–1515, 1997.
[67]  A. T. Suckow, D. Comoletti, M. A. Waldrop et al., “Expression of neurexin, neuroligin, and their cytoplasmic binding partners in the pancreatic β-cells and the involvement of neuroligin in insulin secretion,” Endocrinology, vol. 149, no. 12, pp. 6006–6017, 2008.
[68]  Y. P. Hsueh, “Calcium/calmodulin-dependent serine protein kinase and mental retardation,” Annals of Neurology, vol. 66, no. 4, pp. 438–443, 2009.
[69]  A. Murthy, C. Gonzalez-Agosti, E. Cordero et al., “NHE-RF, a regulatory cofactor for Na+-H+ exchange, is a common interactor for merlin and ERM (MERM) proteins,” Journal of Biological Chemistry, vol. 273, no. 3, pp. 1273–1276, 1998.
[70]  D. Reczek, M. Berryman, and A. Bretscher, “Identification of EPB50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family,” Journal of Cell Biology, vol. 139, no. 1, pp. 169–179, 1997.
[71]  E. J. Weinman, “New functions for the NHERF family of proteins,” Journal of Clinical Investigation, vol. 108, no. 2, pp. 185–186, 2001.
[72]  E. J. Weinman, C. Minkoff, and S. Shenolikar, “Signal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA,” American Journal of Physiology, vol. 279, no. 3, pp. F393–F399, 2000.
[73]  B. D. Moyer, J. Demon, K. H. Karlson et al., “A PDZ-interacting domain in CFTR is an apical membrane polarization signal,” Journal of Clinical Investigation, vol. 104, no. 10, pp. 1353–1361, 1999.
[74]  V. Raghuram, D. O. D. Mak, and J. K. Foskett, “Regulation of cystic fibrosis transmembrane conductance regulator single-channel gating by bivalent PDZ-domain-mediated interaction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 3, pp. 1300–1305, 2001.
[75]  R. A. Hall, L. S. Ostedgaard, R. T. Premont et al., “A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 15, pp. 8496–8501, 1998.
[76]  B. D. Moyer, M. Duhaime, C. Shaw et al., “The PDZ-interacting domain of cystic fibrosis transmembrane conductance regulator is required for functional expression in the apical plasma membrane,” Journal of Biological Chemistry, vol. 275, no. 35, pp. 27069–27074, 2000.
[77]  Y. Tang, J. Tang, Z. Chen et al., “Association of mammalian Trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF,” Journal of Biological Chemistry, vol. 275, no. 48, pp. 37559–37564, 2000.
[78]  M. V. Brahmajothi and D. L. Campbell, “Heterogeneous basal expression of nitric oxide synthase and superoxide dismutase isoforms in mammalian heart: implications for mechanisms governing indirect and direct nitric oxide-related effects,” Circulation Research, vol. 85, no. 7, pp. 575–587, 1999.
[79]  L. A. Barouch, R. W. Harrison, M. W. Skaf et al., “Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms,” Nature, vol. 416, no. 6878, pp. 337–340, 2002.
[80]  C. E. Sears, S. M. Bryant, E. A. Ashley et al., “Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling,” Circulation Research, vol. 92, no. 5, pp. e52–e59, 2003.
[81]  J. K. Bendall, T. Damy, P. Ratajczak et al., “Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in β-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat,” Circulation, vol. 110, no. 16, pp. 2368–2375, 2004.
[82]  T. Damy, P. Ratajczak, A. M. Shah et al., “Increased neuronal nitric oxide synthase-derived NO production in the failing human heart,” The Lancet, vol. 363, no. 9418, pp. 1365–1367, 2004.
[83]  K. Y. Xu, D. L. Huso, T. M. Dawson, D. S. Bredt, and L. C. Becker, “Nitric oxide synthase in cardiac sarcoplasmic reticulum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 657–662, 1999.
[84]  K. Y. Xu, S. P. Kuppusamy, J. Q. Wang et al., “Nitric oxide protects cardiac sarcolemmal membrane enzyme function and ion active transport against ischemia-induced inactivation,” Journal of Biological Chemistry, vol. 278, no. 43, pp. 41798–41803, 2003.
[85]  N. Burkard, A. G. Rokita, S. G. Kaufmann et al., “Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility,” Circulation Research, vol. 100, no. 3, pp. e32–e44, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133