The Golgi complex is considered the central station of the secretory pathway where cargo proteins and lipids are properly modified, classified, packed into specific carriers and delivered to their final destinations. Early electron microscope studies showed the extraordinary structural complexity of this organelle. However, despite the large volume of incoming and outgoing traffic, it is able to maintain its architecture, although it is also flexible enough to adapt to the functional status of the cell. Many components of the molecular machinery involved in membrane traffic and other Golgi functions have been identified. However, some basic aspects of Golgi functioning remain unsolved. For instance, how cargo moves through the stack remains controversial and two classical models have been proposed: vesicular transport and cisternal maturation. Since neither of these models explains all the experimental data, a combination of these models as well as new models have been proposed. In this context, the specific role of the cisternae, vesicles and tubules needs to be clarified. In this review, we summarize our current knowledge of the Golgi organization and function, focusing on the mechanisms of intra-Golgi transport. 1. Introduction Eukaryotic cells are highly compartmentalized in organelles, which are surrounded by membranes. Every compartment has its own composition, structure, and function. However, these elements are not totally isolated because there is a continuous flow of components between them. Endocytic and secretory routes are complex processes involving formation, movement, and fusion with the specific targets of transport carriers. Palade was a pioneer in this field by establishing that newly synthesized proteins in the endoplasmic reticulum (ER) move to the Golgi complex (GC) and they are packed in secretory granules before being secreted [1]. Although this concept is a dogma in cell biology, some proteins bypass the GC on their way to the cell surface, a process known as unconventional trafficking [2]. The central role of the GC in the secretory pathway is nowadays understood [3, 4]. The GC receives newly synthesized proteins and lipids from the ER. This cargo is classified, packed, and delivered to the final destination, but is extensively modified on the way, mainly involving the glycosylation of proteins and lipids. Recently, a key role in many cellular processes has been associated with this compartment including microtubule nucleation, signaling, and calcium homoeostasis [5]. In recent decades the molecular machinery involved in many
References
[1]
G. Palade, “Intracellular aspects of the process of protein synthesis,” Science, vol. 189, no. 4200, pp. 347–358, 1975.
[2]
W. Nickel and C. Rabouille, “Mechanisms of regulated unconventional protein secretion,” Nature Reviews Molecular Cell Biology, vol. 10, no. 2, pp. 148–155, 2009.
[3]
M. G. Farquhar and G. E. Palade, “The Golgi apparatus (complex) (1954–1981) from artifact to center stage,” Journal of Cell Biology, vol. 91, no. 3, pp. 77s–103s, 1981.
[4]
M. G. Farquhar and G. E. Palade, “The Golgi apparatus: 100 years of progress and controversy,” Trends in Cell Biology, vol. 8, no. 1, pp. 2–10, 1998.
[5]
C. Wilson, R. Venditti, L. R. Rega, A. Colanzi, G. D'Angelo, and M. A. De, “The Golgi apparatus: an organelle with multiple complex functions,” Biochemical Journal, vol. 433, no. 1, pp. 1–9, 2011.
[6]
J. Lippincott-Schwartz, E. Snapp, and A. Kemvorthy, “Studying protein dynamics in living cells,” Nature Reviews Molecular Cell Biology, vol. 2, no. 6, pp. 444–456, 2001.
[7]
G. Perinetti, T. Müller, A. Spaar, R. Polishchuk, A. Luini, and A. Egner, “Correlation of 4Pi and electron microscopy to study transport through single golgi stacks in living cells with super resolution,” Traffic, vol. 10, no. 4, pp. 379–391, 2009.
[8]
J. Lippincott-Schwartz, “Emerging in vivo analyses of cell function using fluorescence imaging,” Annual Review of Biochemistry, vol. 80, pp. 327–332, 2011.
[9]
A. Gilchrist, C. E. Au, J. Hiding et al., “Quantitative proteomics analysis of the secretory pathway,” Cell, vol. 127, no. 6, pp. 1265–1281, 2006.
[10]
J. Gannon, J. J. Bergeron, and T. Nilsson, “Golgi and related vesicle proteomics: simplify to identify,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 12, 2011.
[11]
F. Bard, L. Casano, A. Mallabiabarrena, et al., “Functional genomics reveals genes involved in protein secretion and Golgi organization,” Nature, vol. 439, pp. 604–607, 2006.
[12]
J. W. Slot and H. J. Geuze, “Immunoelectron microscopic exploration of the Golgi complex,” Journal of Histochemistry and Cytochemistry, vol. 31, no. 8, pp. 1049–1056, 1983.
[13]
D. Zeuschner, W. J. C. Geerts, E. van Donselaar et al., “Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers,” Nature Cell Biology, vol. 8, no. 4, pp. 377–383, 2006.
[14]
R. S. Polishchuk, E. V. Polishchuk, P. Marra et al., “Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane,” Journal of Cell Biology, vol. 148, no. 1, pp. 45–58, 2000.
[15]
B. S. Donohoe, S. Mogelsvang, and L. A. Staehelin, “Electron tomography of ER, Golgi and related membrane systems,” Methods, vol. 39, no. 2, pp. 154–162, 2006.
[16]
N. K. Gonatas, A. Stieber, and J. O. Gonatas, “Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death,” Journal of the Neurological Sciences, vol. 246, no. 1-2, pp. 21–30, 2006.
[17]
M. C. Derby and P. A. Gleeson, “New insights into membrane trafficking and protein sorting,” International Review of Cytology, vol. 261, pp. 47–116, 2007.
[18]
A. A. Mironov and M. Pavelka, The Golgi Apparatus. State of the Art 110 Years after Camillo Golgi's Discovery, Springer Wien, NewYork, NY, USA, 2008.
[19]
E. Papanikou and B. S. Glick, “The yeast Golgi apparatus: insights and mysteries,” FEBS Letters, vol. 583, no. 23, pp. 3746–3751, 2009.
[20]
J. H. Wei and J. Seemann, “Mitotic division of the mammalian Golgi apparatus,” Seminars in Cell and Developmental Biology, vol. 20, no. 7, pp. 810–816, 2009.
[21]
M. Anitei and B. Hoflack, “Exit from the trans-Golgi network: from molecules to mechanisms,” Current Opinion in Cell Biology, vol. 23, no. 4, pp. 443–451, 2011.
[22]
J. Klumperman, “Architecture of the mammalian Golgi,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 7, Article ID a005181, 2011.
[23]
Y. Wang and J. Seemann, “Golgi biogenesis,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 10, Article ID a005330, 2011.
[24]
K. W. Moremen, M. Tiemeyer, and A. V. Nairn, “Vertebrate protein glycosylation: diversity, synthesis and function,” Nature Reviews Molecular Cell Biology, vol. 13, pp. 448–462, 2012.
[25]
A. J. Dalton and M. D. Felix, “A comparative study of the Golgi complex,” The Journal of Biophysical and Biochemical Cytology, vol. 2, no. 4, pp. 79–84, 1956.
[26]
A. Rambourg, Y. Clermont, and A. Marraud, “Three dimensional structure of the osmium impregnated Golgi apparatus as seen in the high voltage electron microscope,” American Journal of Anatomy, vol. 140, no. 1, pp. 27–46, 1974.
[27]
A. Rambourg, Y. Clermont, and L. Hermo, “Three-dimensional architecture of the Golgi apparatus in Sertoli cells of the rat,” American Journal of Anatomy, vol. 154, no. 4, pp. 455–476, 1979.
[28]
M. S. Ladinsky, D. N. Mastronarde, J. R. McIntosh, K. E. Howell, and L. A. Staehelin, “Golgi structure in three dimensions: functional insights from the normal rat kidney cell,” Journal of Cell Biology, vol. 144, no. 6, pp. 1135–1149, 1999.
[29]
R. S. Taylor, S. M. Jones, R. H. Dahl, M. H. Nordeen, and K. E. Howell, “Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities,” Molecular Biology of the Cell, vol. 8, no. 10, pp. 1911–1931, 1997.
[30]
M. M. Wu, M. Grabe, S. Adams, R. Y. Tsien, H. P. H. Moore, and T. E. Machen, “Mechanisms of pH regulation in the regulated secretory pathway,” Journal of Biological Chemistry, vol. 276, no. 35, pp. 33027–33035, 2001.
[31]
J. H. Wei and J. Seemann, “Unraveling the Golgi ribbon,” Traffic, vol. 11, no. 11, pp. 1391–1400, 2010.
[32]
A. A. Mironov and G. V. Beznoussenko, “Molecular mechanisms responsible for formation of Golgi ribbon,” Histology and Histopathology, vol. 26, no. 1, pp. 117–133, 2011.
[33]
B. Storrie, J. White, S. R?ttger, E. H. K. Stelzer, T. Suganuma, and T. Nilsson, “Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering,” Journal of Cell Biology, vol. 143, no. 6, pp. 1505–1521, 1998.
[34]
J. Fan, Z. Hu, L. Zeng et al., “Golgi apparatus and neurodegenerative diseases,” International Journal of Developmental Neuroscience, vol. 26, no. 6, pp. 523–534, 2008.
[35]
Y. Fujita, E. Ohama, M. Takatama, S. Al-Sarraj, and K. Okamoto, “Fragmentation of Golgi apparatus of nigral neurons with α-synuclein-positive inclusions in patients with Parkinson's disease,” Acta Neuropathologica, vol. 112, no. 3, pp. 261–265, 2006.
[36]
G. Thorne-Tjomsland, M. Dumontier, and J. C. Jamieson, “3D topography of noncompact zone Golgi tubules in rat spermatids: a computer-assisted serial section reconstruction study,” The Anatomical Record, vol. 250, pp. 381–396, 1998.
[37]
A. S. Opat, C. Van Vliet, and P. A. Gleeson, “Trafficking and localisation of resident Golgi glycosylation enzymes,” Biochimie, vol. 83, no. 8, pp. 763–773, 2001.
[38]
M. G. Farquhar and H. P. Hauri, “Protein sorting and vesicular traffic in the Golgi apparatus,” in The Golgi Apparatus, E. Berger and J. Roth, Eds., pp. 63–128, Birkh?user, Basel, Switzerland, 1997.
[39]
G. van Meer, “Lipids of the Golgi membrane,” Trends in Cell Biology, vol. 8, no. 1, pp. 29–33, 1998.
[40]
J. C. M. Holthuis, T. Pomorski, R. J. Raggers, H. Sprong, and G. Van Meer, “The organizing potential of sphingolipids in intracellular membrane transport,” Physiological Reviews, vol. 81, no. 4, pp. 1689–1723, 2001.
[41]
D. K. Banfield, “Mechanisms of protein retention in the Golgi,” Cold Spring Harbor Perspectives in Biology, vol. 3, Article ID a005264, 2011.
[42]
D. J. Gill, J. Chia, J. Senewiratne, and F. Bard, “Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes,” Journal of Cell Biology, vol. 189, no. 5, pp. 843–858, 2010.
[43]
A. Sesso, F. Paulo de Faria, E. S. M. Iwamura, and H. Correa, “A three-dimensional reconstruction study of the rough ER-Golgi interface in serial thin sections of the pancreatic acinar cell of the rat,” Journal of Cell Science, vol. 107, no. 3, pp. 517–528, 1994.
[44]
Y. Clermont, A. Rambourg, and L. Hermo, “Connections between the various elements of the cis- and mid-compartments of the Golgi apparatus of early rat spermatids,” Anatomical Record, vol. 240, no. 4, pp. 469–480, 1994.
[45]
A. Rambourg and Y. Clermont, “Three-dimensional structure of the Golgi apparatus in mammalian cells,” in The Golgi Apparatus, E. G. Berger and J. Roth, Eds., pp. 37–61, Birkh?user, Basel, Switzerland, 1997.
[46]
G. Vivero-Salmerón, J. Ballesta, and J. A. Martínez-Menárguez, “Heterotypic tubular connections at the endoplasmic reticulum-Golgi complex interface,” Histochemistry and Cell Biology, vol. 130, pp. 709–717, 2008.
[47]
C. van Vliet, E. C. Thomas, A. Merino-Trigo, R. D. Teasdale, and P. A. Gleeson, “Intracellular sorting and transport of proteins,” Progress in Biophysics and Molecular Biology, vol. 83, no. 1, pp. 1–45, 2003.
[48]
G. Griffiths, S. Pfeiffer, K. Simons, and K. Matlin, “Exit of newly synthesized membrane proteins from the trans cisterna of the Golgi complex to the plasma membrane,” Journal of Cell Biology, vol. 101, no. 3, pp. 949–964, 1985.
[49]
G. Griffiths, S. D. Fuller, R. Back, M. Hollinshead, S. Pfeiffer, and K. Simons, “The dynamic nature of the Golgi complex,” Journal of Cell Biology, vol. 108, no. 2, pp. 277–297, 1989.
[50]
H. J. Geuze and D. J. Morre, “Trans-Golgi reticulum,” Journal of Electron Microscopy Technique, vol. 17, no. 1, pp. 24–34, 1991.
[51]
Y. Clermont, A. Rambourg, and L. Hermo, “Trans-Golgi network (TGN) of different cell types: three-dimensional structural characteristics and variability,” Anatomical Record, vol. 242, no. 3, pp. 289–301, 1995.
[52]
R. S. Polishchuk and A. A. Mironov, “Structural aspects of Golgi function,” Cellular and Molecular Life Sciences, vol. 61, no. 2, pp. 146–158, 2004.
[53]
P. A. Gleeson, J. G. Lock, M. R. Luke, and J. L. Stow, “Domains of the TGN: coats, tethers and G proteins,” Traffic, vol. 5, no. 5, pp. 315–326, 2004.
[54]
F. Bard and V. Malhotra, “The formation of TGN-to-plasma-membrane transport carriers,” Annual Review of Cell and Developmental Biology, vol. 22, pp. 439–455, 2006.
[55]
R. D. Klausner, J. G. Donaldson, and J. Lippincott-Schwartz, “Brefeldin A: insights into the control of membrane traffic and organelle structure,” Journal of Cell Biology, vol. 116, no. 5, pp. 1071–1080, 1992.
[56]
J. Llopis, J. M. McCaffery, A. Miyawaki, M. G. Farquhar, and R. Y. Tsien, “Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 12, pp. 6803–6808, 1998.
[57]
H. H. Mollenhauer and D. J. Morré, “The tubular network of the Golgi apparatus,” Histochemistry and Cell Biology, vol. 109, no. 5-6, pp. 533–543, 1998.
[58]
L. Orci, A. Perrelet, and J. E. Rothman, “Vesicles on strings: Morphological evidence for processive transport within the Golgi stack,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 5, pp. 2279–2283, 1998.
[59]
Y. Xiang and Y. Wang, “New components of the Golgi matrix,” Cell and Tissue Research, vol. 344, no. 3, pp. 365–379, 2011.
[60]
N. Nakamura, C. Rabouille, R. Watson et al., “Characterization of a cis-Golgi matrix protein, GM130,” Journal of Cell Biology, vol. 131, no. 6, pp. 1715–1726, 1995.
[61]
P. Slusarewicz, T. Nilsson, N. Hui, R. Watson, and G. Warren, “Isolation of a matrix that binds medial Golgi enzymes,” Journal of Cell Biology, vol. 124, no. 4, pp. 405–413, 1994.
[62]
G. Egea and R. M. Rios, “The role of the cytoskeleton in the structure and function of the Golgi apparatus,” in The Golgi Apparatus, A. A. Mironov and M. Pavelka, Eds., pp. 270–300, Springer, NewYork, NY, USA, 2008.
[63]
M. Lowe, “Structural organization of the Golgi apparatus,” Current Opinion in Cell Biology, vol. 23, no. 1, pp. 85–93, 2011.
[64]
R. M. Rios and M. Bornens, “The Golgi apparatus at the cell centre,” Current Opinion in Cell Biology, vol. 15, pp. 60–66, 2003.
[65]
S. Yadav and A. D. Linstedt, “Golgi positioning,” Cold Spring Harbor Perspectives in Biology, vol. 3, pp. 1–17, 2011.
[66]
J. K. Burkhardt, “The role of microtubule-based motor proteins in maintaining the structure and function of the Golgi complex,” Biochimica et Biophysica Acta, vol. 1404, no. 1-2, pp. 113–126, 1998.
[67]
K. Chabin-Brion, J. Marceiller, F. Perez et al., “The Golgi complex is a microtubule-organizing organelle,” Molecular Biology of the Cell, vol. 12, no. 7, pp. 2047–2060, 2001.
[68]
S. Rivero, J. Cardenas, M. Bornens, and R. M. Rios, “Microtubule nucleation at the cis-side of the golgi apparatus requires AKAP450 and GM130,” The EMBO Journal, vol. 28, no. 8, pp. 1016–1028, 2009.
[69]
A. Efimov, A. Kharitonov, N. Efimova et al., “Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi Network,” Developmental Cell, vol. 12, no. 6, pp. 917–930, 2007.
[70]
P. M. Miller, A. W. Folkmann, A. R. R. Maia, N. Efimova, A. Efimov, and I. Kaverina, “Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells,” Nature Cell Biology, vol. 11, no. 9, pp. 1069–1080, 2009.
[71]
F. Valderrama, A. Luna, T. Babià et al., “The Golgi-associated COPI-coated buds and vesicles contain β/γ-actin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 4, pp. 1560–1565, 2000.
[72]
G. Egea, F. Lázaro-Diéguez, and M. Vilella, “Actin dynamics at the Golgi complex in mammalian cells,” Current Opinion in Cell Biology, vol. 18, pp. 168–178, 2006.
[73]
F. Lázaro-Diéguez, C. Colonna, M. Cortegano, M. Calvo, S. E. Martínez, and G. Egea, “Variable actin dynamics requirement for the exit of different cargo from the trans-Golgi network,” FEBS Letters, vol. 581, no. 20, pp. 3875–3881, 2007.
[74]
F. Valderrama, J. M. Durán, T. Babià, H. Barth, J. Renau-Piqueras, and G. Egea, “Actin microfilaments facilitate the retrogade transport from the Golgi complex to the endoplasmic reticulum in mammalian cells,” Traffic, vol. 2, no. 10, pp. 717–726, 2001.
[75]
A. Disanza and G. Scita, “Cytoskeletal regulation: coordinating actin and microtubule dynamics in membrane trafficking,” Current Biology, vol. 18, no. 18, pp. R873–R875, 2008.
[76]
K. G. Campellone, N. J. Webb, E. A. Znameroski, and M. D. Welch, “WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to golgi transport,” Cell, vol. 134, no. 1, pp. 148–161, 2008.
[77]
Q. T. Shen, P. P. Hsiue, C. V. Sindelar, M. D. Welch, K. G. Campellone, and H. W. Wang, “Structural insights into WHAMM-mediated cytoskeletal coordination during membrane remodeling,” The Journal of Cell Biology, vol. 199, pp. 111–124, 2012.
[78]
T. F. Roth and K. R. Porter, “Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L.,” The Journal of Cell Biology, vol. 20, pp. 313–332, 1964.
[79]
B. M. F. Pearse, “Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 73, no. 4, pp. 1255–1259, 1976.
[80]
A. Oprins, R. Duden, T. E. Kreis, H. J. Geuze, and J. W. Slot, “β-COP localizes mainly to the cis-Golgi side in exocrine pancreas,” Journal of Cell Biology, vol. 121, no. 1, pp. 49–60, 1993.
[81]
B. M. F. Pearse and M. S. Robinson, “Clathrin, adaptors, and sorting,” Annual Review of Cell Biology, vol. 6, pp. 151–171, 1990.
[82]
T. Braulke and J. S. Bonifacino, “Sorting of lysosomal proteins,” Biochimica et Biophysica Acta, vol. 1793, no. 4, pp. 605–614, 2009.
[83]
T. Kirchhausen, “Clathrin,” Annual Review of Biochemistry, vol. 69, pp. 699–727, 2000.
[84]
E. Rodriguez-Boulan and A. Müsch, “Protein sorting in the Golgi complex: shifting paradigms,” Biochimica et Biophysica Acta, vol. 1744, no. 3, pp. 455–464, 2005.
[85]
M. A. McNiven, H. Cao, K. R. Pitts, and Y. Yoon, “The dynamin family of mechanoenzymes: pinching in new places,” Trends in Biochemical Sciences, vol. 25, no. 3, pp. 115–120, 2000.
[86]
E. Eisenberg and L. E. Greene, “Multiple roles of auxilin and Hsc70 in clathrin-mediated endocytosis,” Traffic, vol. 8, no. 6, pp. 640–646, 2007.
[87]
C. Barlowe, L. Orci, T. Yeung et al., “COPII: a membrane coat formed by sec proteins that drive vesicle budding from the endoplasmic reticulum,” Cell, vol. 77, no. 6, pp. 895–907, 1994.
[88]
L. C. Bickford, E. Mossessova, and J. Goldberg, “A structural view of the COPII vesicle coat,” Current Opinion in Structural Biology, vol. 14, no. 2, pp. 147–153, 2004.
[89]
D. Jensen and R. Schekman, “COPII-mediated vesicle formation at a glance,” Journal of Cell Science, vol. 124, no. 1, pp. 1–4, 2011.
[90]
T. Kirchhausen, “Making COPII coats,” Cell, vol. 129, no. 7, pp. 1251–1252, 2007.
[91]
C. Barlowe, “COPII and selective export from the endoplasmic reticulum,” Biochimica et Biophysica Acta, vol. 1404, no. 1-2, pp. 67–76, 1998.
[92]
J. A. Martínez-Menárguez, H. J. Geuze, J. W. Slot, and J. Klumperman, “Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles,” Cell, vol. 98, no. 1, pp. 81–90, 1999.
[93]
K. Saito, M. Chen, F. Bard et al., “TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites,” Cell, vol. 136, no. 5, pp. 891–902, 2009.
[94]
L. Jin, K. B. Pahuja, K. E. Wickliffe, et al., “Ubiquitin-dependent regulation of COPII coat size and function,” Nature, vol. 482, pp. 495–500, 2012.
[95]
H. P. Hauri and A. Schweizer, “The endoplasmic reticulum-Golgi intermediate compartment,” Current Opinion in Cell Biology, vol. 4, no. 4, pp. 600–608, 1992.
[96]
S. I. Bannykh, T. Rowe, and W. E. Balch, “The organization of endoplasmic reticulum export complexes,” Journal of Cell Biology, vol. 135, no. 1, pp. 19–35, 1996.
[97]
J. Saraste and E. Kuismanen, “Pre- and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface,” Cell, vol. 38, no. 2, pp. 535–549, 1984.
[98]
A. Schweizer, J. A. M. Fransen, K. Matter, T. E. Kreis, L. Ginsel, and H. P. Hauri, “Identification of an intermediate compartment involved in protein transport from endoplasmic reticulum to Golgi apparatus,” European Journal of Cell Biology, vol. 53, no. 2, pp. 185–196, 1990.
[99]
H. Ben-Takaya, K. Miura, R. Pepperkok, and H. P. Hauri, “Live imaging of bidirectional traffic from the ERGIC,” Journal of Cell Science, vol. 118, no. 2, pp. 357–367, 2005.
[100]
Y. C. Zhang, Y. Zhou, C. Z. Yang, and D. S. Xiong, “A review of ERGIC-53: its structure, functions, regulation and relations with diseases,” Histology and Histopathology, vol. 24, no. 9, pp. 1193–1204, 2009.
[101]
J. F. Presley, N. B. Cole, T. A. Schroer, K. Hirschberg, K. J. M. Zaal, and J. Lippincott-Schwartz, “ER-to-Golgi transport visualized in living cells,” Nature, vol. 389, no. 6646, pp. 81–85, 1997.
[102]
J. A. Martínez-Menárguez, H. J. Geuze, and J. Ballesta, “Identification of two types of beta-COP vesicles in the Golgi complex of rat spermatids,” European Journal of Cell Biology, vol. 71, pp. 137–143, 1996.
[103]
J. Lippincott-Schwartz, J. G. Donaldson, A. Schweizer et al., “Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway,” Cell, vol. 60, no. 5, pp. 821–836, 1990.
[104]
A. Girod, B. Storrie, J. C. Simpson et al., “Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum,” Nature Cell Biology, vol. 1, no. 7, pp. 423–430, 1999.
[105]
V. Popoff, F. Adolf, B. Brügger, and F. Wieland, “COPI budding within the Golgi stack,” Cold Spring Harbor Perspectives in Biology, vol. 3, Article ID a005231, 2011.
[106]
J. Moelleken, J. Malsam, M. J. Betts et al., “Differential localization of coatomer complex isoforms within the Golgi apparatus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 11, pp. 4425–4430, 2007.
[107]
L. Orci, B. S. Glick, and J. E. Rothman, “A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack,” Cell, vol. 46, no. 2, pp. 171–184, 1986.
[108]
V. Malhotra, T. Serafini, L. Orci, J. C. Shepherd, and J. E. Rothman, “Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack,” Cell, vol. 58, no. 2, pp. 329–336, 1989.
[109]
M. G. Waters, T. Serafini, and J. E. Rothman, “‘Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles,” Nature, vol. 349, no. 6306, pp. 248–251, 1991.
[110]
T. Serafini, L. Orci, M. Amherdt, M. Brunner, R. A. Kahn, and J. E. Rothman, “ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein,” Cell, vol. 67, no. 2, pp. 239–253, 1991.
[111]
C. L. Jackson and J. E. Casanova, “Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors,” Trends in Cell Biology, vol. 10, no. 2, pp. 60–67, 2000.
[112]
K. Kawamoto, Y. Yoshida, H. Tamaki et al., “GBF1, a guanine nucleotide exchange factor for ADP-ribosylation factors, is localized to the cis-Golgi and involved in membrane association of the COPI coat,” Traffic, vol. 3, no. 7, pp. 483–495, 2002.
[113]
R. García-Mata, T. Szul, C. Alvarez, and E. Sztul, “ADP-ribosylation factor/COPI-dependent events at the endoplasmic reticulum-Golgi interface are regulated by the guanine nucleotide exchange factor GBF1,” Molecular Biology of the Cell, vol. 14, no. 6, pp. 2250–2261, 2003.
[114]
H. Inoue and P. A. Randazzo, “Arf GAPs and their interacting proteins,” Traffic, vol. 8, no. 11, pp. 1465–1475, 2007.
[115]
G. Tanigawa, L. Orci, M. Amherdt, M. Ravazzola, J. B. Helms, and J. E. Rothman, “Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi- derived COP-coated vesicles,” Journal of Cell Biology, vol. 123, no. 6, pp. 1365–1371, 1993.
[116]
Y. Shiba and P. A. Randazzo, “ArfGAP1 function in COPI mediated membrane traffic: currently debated models and comparison to other coat-binding ArfGAPs,” Histology and Histopathology, vol. 27, pp. 1143–1153, 2012.
[117]
J. Bigay, P. Gounon, S. Roblneau, and B. Antonny, “Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature,” Nature, vol. 426, no. 6966, pp. 563–566, 2003.
[118]
W. Nickel, J. Malsam, K. Gorgas et al., “Uptake by COPI-coated vesicles of both anterograde and retrograde cargo is inhibited by GTPγS in vitro,” Journal of Cell Science, vol. 111, no. 20, pp. 3081–3090, 1998.
[119]
R. Beck, M. Rawet, F. T. Wieland, and D. Cassel, “The COPI system: molecular mechanisms and function,” FEBS Letters, vol. 583, pp. 2701–2709, 2009.
[120]
F. Letourneur, E. C. Gaynor, S. Hennecke et al., “Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum,” Cell, vol. 79, no. 7, pp. 1199–1207, 1994.
[121]
R. Schindler, C. Itin, M. Zerial, F. Lottspeich, and H. P. Hauri, “ERGIC-53, a membrane protein of the ER-Golgi intermediate compartment, carries an ER retention motif,” European Journal of Cell Biology, vol. 61, no. 1, pp. 1–9, 1993.
[122]
L. P. Jackson, M. Lewis, H. M. Kent et al., “Molecular basis for recognition of dilysine trafficking motifs by COPI,” Developmental Cell, vol. 23, pp. 1–8, 2012.
[123]
W. Nickel, K. Sohn, C. Bünning, and F. T. Wieland, “p23, A major COPI-vesicle membrane protein, constitutively cycles through the early secretory pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 21, pp. 11393–11398, 1997.
[124]
J. C. Semenza, K. G. Hardwick, N. Dean, and H. R. B. Pelham, “ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway,” Cell, vol. 61, no. 7, pp. 1349–1357, 1990.
[125]
I. Majoul, M. Straub, S. W. Hell, R. Duden, and H. D. S?ling, “KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET,” Developmental Cell, vol. 1, no. 1, pp. 139–153, 2001.
[126]
B. S. Glick, “Organization of the Golgi apparatus,” Current Opinion in Cell Biology, vol. 12, no. 4, pp. 450–456, 2000.
[127]
R. Blum, D. J. Stephens, and I. Schulz, “Lumenal targeted GFP, used as a marker of soluble cargo, visualises rapid ERGIC to Golgi traffic by a tubulo-vesicular network,” Journal of Cell Science, vol. 113, no. 18, pp. 3151–3159, 2000.
[128]
J. C. Simpson, T. Nilsson, and R. Pepperkok, “Biogenesis of tubular ER-to-golgi transport intermediates,” Molecular Biology of the Cell, vol. 17, no. 2, pp. 723–737, 2006.
[129]
K. Hirschberg, C. M. Miller, J. Ellenberg et al., “Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells,” Journal of Cell Biology, vol. 143, no. 6, pp. 1485–1503, 1998.
[130]
D. Toomre, P. Keller, J. White, J. C. Olivo, and K. Simons, “Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells,” Journal of Cell Science, vol. 112, no. 1, pp. 21–33, 1999.
[131]
L. Hermo, A. Rambourg, and Y. Clermont, “Three-dimensional architecture of the cortical region of the Golgi apparatus in rat spermatids,” American Journal of Anatomy, vol. 157, no. 4, pp. 357–373, 1980.
[132]
M. S. Cooper, A. H. Cornell-Bell, A. Chernjavsky, J. W. Dani, and S. J. Smith, “Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-Golgi elements into a reticulum,” Cell, vol. 61, no. 1, pp. 135–145, 1990.
[133]
N. B. Cole, C. L. Smith, N. Sciaky, M. Terasaki, M. Edidin, and J. Lippincott-Schwartz, “Diffusional mobility of Golgi proteins in membranes of living cells,” Science, vol. 273, no. 5276, pp. 797–801, 1996.
[134]
S. J. Scales, R. Pepperkok, and T. E. Kreis, “Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI,” Cell, vol. 90, no. 6, pp. 1137–1148, 1997.
[135]
M. S. Ladinsky, J. R. Kremer, P. S. Furcinitti, J. R. McIntosh, and K. E. Howell, “HVEM tomography of the trans-Golgi network: structural insights and identification of a lace-like vesicle coat,” Journal of Cell Biology, vol. 127, no. 1, pp. 29–38, 1994.
[136]
A. Trucco, R. S. Polischuck, O. Martella et al., “Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments,” Nature Cell Biology, vol. 6, no. 11, pp. 1071–1081, 2004.
[137]
B. J. Marsh, N. Volkmann, J. R. McIntosh, and K. E. Howell, “Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 15, pp. 5565–5570, 2004.
[138]
E. Martínez-Alonso, G. Egea, J. Ballesta, and J. A. Martínez-Menárguez, “Structure and dynamics of the Golgi complex at 15 degrees C: low temperature induces the formation of Golgi-derived tubules,” Traffic, vol. 6, pp. 32–44, 2005.
[139]
E. Martínez-Alonso, J. Ballesta, and J. A. Martínez-Menárguez, “Low-temperature-induced Golgi tubules are transient membranes enriched in molecules regulating intra-Golgi transport,” Traffic, vol. 8, no. 4, pp. 359–368, 2007.
[140]
T. E. Kreis, “Regulation of vesicular and tubular membrane traffic of the Golgi complex by coat proteins,” Current Opinion in Cell Biology, vol. 4, no. 4, pp. 609–615, 1992.
[141]
M. Lowe and T. E. Kreis, “Regulation of membrane traffic in animal cells by COPI,” Biochimica et Biophysica Acta, vol. 1404, no. 1-2, pp. 53–66, 1998.
[142]
M. Krauss, J. Y. Jia, A. Roux et al., “Arf1-GTP-induced tubule formation suggests a function of arf family proteins in curvature acquisition at sites of vesicle budding,” Journal of Biological Chemistry, vol. 283, no. 41, pp. 27717–27723, 2008.
[143]
A. Roux, G. Cappello, J. Cartaud, J. Prost, B. Goud, and P. Bassereau, “A minimal system allowing tubulation with molecular motors pulling on giant liposomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 8, pp. 5394–5399, 2002.
[144]
P. de Figueiredo, D. Drecktrah, R. S. Polizotto, N. B. Cole, J. Lippincott-Schwartz, and W. J. Brown, “Phospholipase A2 antagonists inhibit constitutive retrograde membrane traffic to the reticulum,” Traffic, vol. 1, no. 6, pp. 504–511, 2000.
[145]
W. J. Brown, K. Chambers, and A. Doody, “Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function,” Traffic, vol. 4, no. 4, pp. 214–221, 2003.
[146]
E. San Pietro, M. Capestrano, E. V. Polishchuk et al., “Group IV phospholipase A2α controls the formation of inter-cisternal continuities involved in intra-golgi transport,” PLoS Biology, vol. 7, no. 9, Article ID e1000194, 2009.
[147]
J. A. Schmidt, D. N. Kalkofen, K. W. Donovan, and W. J. Brown, “A role for phospholipase A2 activity in membrane tubule formation and TGN trafficking,” Traffic, vol. 11, no. 12, pp. 1530–1536, 2010.
[148]
C. L. Baron and V. Malhotra, “Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane,” Science, vol. 295, no. 5553, pp. 325–328, 2002.
[149]
I. Fernández-Ulibarri, M. Vilella, F. Lázaro-Diéguez et al., “Diacylglycerol is required for the formation of COPI vesicles in the Golgi-to-ER transport pathway,” Molecular Biology of the Cell, vol. 18, no. 9, pp. 3250–3263, 2007.
[150]
J. S. Yang, H. Gad, S. Y. Lee et al., “A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance,” Nature Cell Biology, vol. 10, no. 10, pp. 1146–1153, 2008.
[151]
J. S. Yang, C. Valente, R. S. Polishchuk et al., “COPI acts in both vesicular and tubular transport,” Nature Cell Biology, vol. 13, no. 8, pp. 996–1003, 2011.
[152]
M. Tomás, E. Martínez-Alonso, J. Ballesta, and J. A. Martínez-Menárguez, “Regulation of ER-Golgi intermediate compartment tubulation and mobility by COPI coats, motor proteins and microtubules,” Traffic, vol. 11, pp. 616–625, 2010.
[153]
H. Ben-Tekaya, R. A. Kahn, and H. P. Hauri, “ADP ribosylation factors 1 and 4 and group VIA phospholipase A2 regulate morphology and intraorganellar traffic in the endoplasmic reticulum-golgi intermediate compartment,” Molecular Biology of the Cell, vol. 21, no. 23, pp. 4130–4140, 2010.
[154]
E. V. Polishchuk, A. Di Pentima, A. Luini, and R. S. Polishchuk, “Mechanism of constitutive export from the golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-golgi network tubular domains,” Molecular Biology of the Cell, vol. 14, no. 11, pp. 4470–4485, 2003.
[155]
A. A. Mironov, A. A. Mironov Jr., G. V. Beznoussenko, et al., “ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains,” Dev. Cell, vol. 5, pp. 583–594, 2003.
[156]
H. Horstmann, C. P. Ng, B. L. Tang, and W. Hong, “Ultrastructural characterization of endoplasmic reticulum—Golgi transport containers (EGTC),” Journal of Cell Science, vol. 115, no. 22, pp. 4263–4273, 2002.
[157]
J. S. Bonifacino and B. S. Glick, “The mechanisms of vesicle budding and fusion,” Cell, vol. 116, no. 2, pp. 153–166, 2004.
[158]
W. Hong, “SNAREs and traffic,” Biochimica et Biophysica Acta, vol. 1744, no. 3, pp. 493–517, 2005.
[159]
R. Jahn and R. H. Scheller, “SNAREs—engines for membrane fusion,” Nature Reviews Molecular Cell Biology, vol. 7, no. 9, pp. 631–643, 2006.
[160]
J. Malsam and T. H. S?llner, “Organization of SNAREs within the Golgi stack,” Cold Spring Harbor Perspectives in Biology, vol. 3, Article ID a005249, 2011.
[161]
A. Volchuk, M. Ravazzola, A. Perrelet et al., “Countercurrent distribution of two distinct SNARE complexes mediating transport within the Golgi stack,” Molecular Biology of the Cell, vol. 15, no. 4, pp. 1506–1518, 2004.
[162]
O. Laufman, A. Kedan, W. Hong, and S. Lev, “Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing,” The EMBO Journal, vol. 28, no. 14, pp. 2006–2017, 2009.
[163]
H. Stenmark, “Rab GTPases as coordinators of vesicle traffic,” Nature Reviews Molecular Cell Biology, vol. 10, no. 8, pp. 513–525, 2009.
[164]
M. Zerial and H. McBride, “Rab proteins as membrane organizers,” Nature Reviews Molecular Cell Biology, vol. 2, no. 2, pp. 107–117, 2001.
[165]
S. Liu and B. Storrie, “Are Rab proteins the link between Golgi organization and membrane trafficking?” Cell, vol. 69, no. 24, pp. 4093–4106, 2012.
[166]
M. Tomás, M. P. Marín, E. Martínez-Alonso, et al., “Alcohol induces Golgi fragmentation in differentiated PC12 cells by deregulating Rab1-dependent ER-to-Golgi transport,” Histochemistry and Cell Biology, vol. 138, pp. 489–501, 2012.
[167]
W. O. Rendón, E. Martínez-Alonso, M. Tomás, N. Martínez-Martínez, and J. A. Martínez-Menárguez, “Golgi fragmentation is Rab and SNARE dependent in cellular models of Parkinson's disease,” Histochemistry and Cell Biology, 2012.
[168]
O. Martinez, A. Schmidt, J. Salaméro, B. Hoflack, M. Roa, and B. Goud, “The small GTP-binding protein rab6 functions in intra-Golgi transport,” Journal of Cell Biology, vol. 127, no. 6 I, pp. 1575–1588, 1994.
[169]
J. White, L. Johannes, F. Mallard et al., “Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells,” Journal of Cell Biology, vol. 147, no. 4, pp. 743–759, 1999.
[170]
I. Grigoriev, D. Splinter, N. Keijzer et al., “Rab6 regulates transport and targeting of exocytotic carriers,” Developmental Cell, vol. 13, no. 2, pp. 305–314, 2007.
[171]
S. Miserey-Lenkei, G. Chalancon, S. Bardin, E. Formstecher, B. Goud, and A. Echard, “Rab and actomyosin-dependent fission of transport vesicles at the golgi complex,” Nature Cell Biology, vol. 12, no. 7, pp. 645–654, 2010.
[172]
I. Grigoriev, K. L. Yu, E. Martinez-Sanchez, et al., “Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers,” Current Biology, vol. 2, pp. 967–974, 2011.
[173]
B. Storrie, M. Micaroni, G. P. Morgan, et al., “Electron tomography reveals that Rab6 is essential to the trafficking of trans-Golgi clathrin and COPI-coated vesicles and the maintenance of Golgi cisternal number,” Traffic, vol. 13, pp. 727–744, 2012.
[174]
J. Y. Zheng, T. Koda, T. Fujiwara, M. Kishi, Y. Ikehara, and M. Kakinuma, “A novel Rab GTPase, Rab33B, is ubiquitously expressed and localized to the medial Golgi cisternae,” Journal of Cell Science, vol. 111, no. 8, pp. 1061–1069, 1998.
[175]
T. Starr, Y. Sun, N. Wilkins, and B. Storrie, “Rab33b and Rab6 are functionally overlapping regulators of Golgi homeostasis and trafficking,” Traffic, vol. 11, no. 5, pp. 626–636, 2010.
[176]
G. V. Pusapati, G. Luchetti, and S. R. Pfeffer, “Ric1/Rgp1 complex: a guanine nucleotide exchange factor for the late Golgi Rab6A GTPase and an effector of the medial Golgi Rab33B GTPase,” The Journal of Biological Chemistry, vol. 287, no. 50, pp. 42129–42137, 2012.
[177]
E. Sztul and V. Lupashin, “Role of vesicle tethering factors in the ER-Golgi membrane traffic,” FEBS Letters, vol. 583, no. 23, pp. 3770–3783, 2009.
[178]
I. Barinaga-Rementeria Ramirez and M. Lowe, “Golgins and GRASPs: holding the Golgi together,” Seminars in Cell and Developmental Biology, vol. 20, no. 7, pp. 770–779, 2009.
[179]
M. A. De Matteis, A. A. Mironov, and G. V. Beznoussenko, “The Golgi ribbon and the function of the golgins,” in The Golgi Apparatus, A. A. Mironov and M. Pavelka, Eds., pp. 223–246, Springer, NewYork, NY, USA, 2008.
[180]
V. J. Miller and D. Ungar, “Re'COG'nition at the Golgi,” Traffic, vol. 13, pp. 891–897, 2012.
[181]
M. Sacher, Y. G. Kim, A. Lavie, B. H. Oh, and N. Segev, “The TRAPP complex: insights into its architecture and function,” Traffic, vol. 9, no. 12, pp. 2032–2042, 2008.
[182]
J. E. Rothman and F. T. Wieland, “Protein sorting by transport vesicles,” Science, vol. 272, no. 5259, pp. 227–234, 1996.
[183]
J. E. Rothman and L. Orci, “Molecular dissection of the secretory pathway,” Nature, vol. 355, no. 6359, pp. 409–415, 1992.
[184]
P. Chardin and F. McCormick, “Brefeldin A: the advantage of being uncompetitive,” Cell, vol. 97, no. 2, pp. 153–155, 1999.
[185]
P. Cosson and F. Letourneur, “Coatomer interaction with Di-lysine endoplasmic reticulum retention motifs,” Science, vol. 263, no. 5153, pp. 1629–1632, 1994.
[186]
L. Orci, M. Ravazzola, A. Volchuk et al., “Anterograde flow of cargo across the Golgi stack potentially mediated via bidirectional “percolating” COPI vesicles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 19, pp. 10400–10405, 2000.
[187]
L. Orci, M. Stamnes, M. Ravazzola et al., “Bidirectional transport by distinct populations of COPI-coated vesicles,” Cell, vol. 90, no. 2, pp. 335–349, 1997.
[188]
J. A. Martínez-Menárguez, R. Prekeris, V. M. J. Oorschot et al., “Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport,” Journal of Cell Biology, vol. 155, no. 7, pp. 1213–1224, 2001.
[189]
P. Cosson, M. Amherdt, J. E. Rothman, and L. Orci, “A resident Golgi protein is excluded from peri-Golgi vesicles in NRK cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 12831–12834, 2002.
[190]
L. Bonfanti, A. A. Mironov, J. A. Martínez-Menárguez et al., “Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation,” Cell, vol. 95, no. 7, pp. 993–1003, 1998.
[191]
M. Melkonian, B. Becker, and D. Becker, “Scale formation in algae,” Journal of Electron Microscopy Technique, vol. 17, no. 2, pp. 165–178, 1991.
[192]
A. Volchuk, M. Amherdt, M. Ravazzola et al., “Megavesicles implicated in the rapid transport of intracisternal aggregates across the Golgi stack,” Cell, vol. 102, no. 3, pp. 335–348, 2000.
[193]
P. P. Grasse, “Ultrastructure, polarity and reproduction of Golgi apparatus,” Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, vol. 245, no. 16, pp. 1278–1281, 1957.
[194]
B. S. Glick and V. Malhotra, “The curious status of the Golgi apparatus,” Cell, vol. 95, no. 7, pp. 883–889, 1998.
[195]
B. S. Glick, T. Elston, and G. Oster, “A cisternal maturation mechanism can explain the asymmetry of the Golgi stack,” FEBS Letters, vol. 414, no. 2, pp. 177–181, 1997.
[196]
E. Losev, C. A. Reinke, J. Jellen, D. E. Strongin, B. J. Bevis, and B. S. Glick, “Golgi maturation visualized in living yeast,” Nature, vol. 441, no. 7096, pp. 1002–1006, 2006.
[197]
K. Matsuura-Tokita, M. Takeuchi, A. Ichihara, K. Mikuriya, and A. Nakano, “Live imaging of yeast Golgi cisternal maturation,” Nature, vol. 441, no. 7096, pp. 1007–1010, 2006.
[198]
H. R. B. Pelham and J. E. Rothman, “The debate about transport in the golgi—two sides of the same coin?” Cell, vol. 102, no. 6, pp. 713–719, 2000.
[199]
G. H. Patterson, K. Hirschberg, R. S. Polishchuk, D. Gerlich, R. D. Phair, and J. Lippincott-Schwartz, “Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane System,” Cell, vol. 133, no. 6, pp. 1055–1067, 2008.
[200]
A. A. Mironov and G. V. Beznoussenko, “The kiss-and-run model of intra-Golgi transport,” International Journal of Molecular Sciences, vol. 13, pp. 6800–6819, 2012.
[201]
G. Griffiths, “Gut thoughts on the golgi complex,” Traffic, vol. 1, no. 9, pp. 738–745, 2000.
[202]
C. Golgi, “Sur la structure des cellules nerveuses,” Archives Italiennes de Biologie, vol. 30, pp. 60–71, 1898.