全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Integrin Signaling as a Cancer Drug Target

DOI: 10.1155/2013/135164

Full-Text   Cite this paper   Add to My Lib

Abstract:

Integrins are transmembrane receptors that mediate cell adhesion to neighboring cells and to the extracellular matrix. Here, the various modes in which integrin-mediated adhesion regulates intracellular signaling pathways impinging on cell survival, proliferation, and differentiation are considered. Subsequently, evidence that integrins also control crucial signaling cascades in cancer cells is discussed. Lastly, the important role of integrin signaling in tumor cells as well as in stromal cells that support cancer growth, metastasis, and therapy resistance indicates that integrin signaling may be an attractive target for (combined) cancer therapy strategies. Current approaches to target integrins in this context are reviewed. 1. Integrin-Mediated Cell Adhesion 1.1. Cell Adhesion Cells within multicellular organisms are typically attached to each other and to the extracellular matrix (ECM). ECM is a meshwork of various glycoproteins that exists in many forms, including laminin-rich basement membranes that align tissues, pliable matrices made from fibrilar networks of collagens, rigid collagen-based bone matrices, and provisional fibronectin-containing matrices associated with active processes such as wound healing and angiogenesis [1]. Various adhesion molecules, such as those belonging to the cadherin family, mediate cell-cell contacts. Likewise, interactions with the ECM also occur through a variety of receptors, including syndecans, dystroglycans, and integrins. 1.2. Integrins Integrin cell adhesion receptors participate in cell-cell and cell-ECM interactions [2]. This large family of heterodimeric transmembrane receptors recognizes a plethora of extracellular ligands, including transmembrane receptors on other cells and ECM proteins. The common integrin-binding motif, Arg-Gly-Asp (RGD), is shared by several ECM proteins, including fibronectin, vitronectin, and fibrinogen. Integrin binding to laminins and collagens occurs at other recognition motifs. Integrins participating in cell-cell adhesion bind counter receptors such as a disintegrin and metalloproteases (ADAMs), or immunoglobulin-type receptors such as intercellular adhesion molecules (ICAMs) and vascular cell adhesion molecules (VCAMs) that are expressed on leukocytes and endothelial cells. 1.3. Integrin Evolution Clearly, integrins are essential receptors in mammalian development, and adult life. Studies in mice have attributed roles to certain integrins already at very early stages of development while others play specific roles later in the adult. In fact, integrins are found throughout

References

[1]  R. O. Hynes, “The extracellular matrix: not just pretty fibrils,” Science, vol. 326, no. 5957, pp. 1216–1219, 2009.
[2]  R. O. Hynes, “Integrins: bidirectional, allosteric signaling machines,” Cell, vol. 110, no. 6, pp. 673–687, 2002.
[3]  R. O. Hynes and Q. Zhao, “The evolution of cell adhesion,” Journal of Cell Biology, vol. 150, no. 2, pp. F89–F95, 2000.
[4]  C. Brakebusch and R. F?ssler, “The integrin-actin connection, an eternal love affair,” The EMBO Journal, vol. 22, no. 10, pp. 2324–2333, 2003.
[5]  M. Moser, K. R. Legate, R. Zent, and R. F?ssler, “The tail of integrins, talin, and kindlins,” Science, vol. 324, no. 5929, pp. 895–899, 2009.
[6]  B. Geiger, J. P. Spatz, and A. D. Bershadsky, “Environmental sensing through focal adhesions,” Nature Reviews Molecular Cell Biology, vol. 10, no. 1, pp. 21–33, 2009.
[7]  S. Tadokoro, S. J. Shattil, K. Eto et al., “Talin binding to integrin β tails: a final common step in integrin activation,” Science, vol. 302, no. 5642, pp. 103–106, 2003.
[8]  F. Ye, G. Hu, D. Taylor et al., “Recreation of the terminal events in physiological integrin activation,” Journal of Cell Biology, vol. 188, no. 1, pp. 157–173, 2010.
[9]  B. Geiger, A. Bershadsky, R. Pankov, and K. M. Yamada, “Transmembrane extracellular matrix-cytoskeleton crosstalk,” Nature Reviews Molecular Cell Biology, vol. 2, no. 11, pp. 793–805, 2001.
[10]  J. C. Friedland, M. H. Lee, and D. Boettiger, “Mechanically activated integrin switch controls α5β1 function,” Science, vol. 323, no. 5914, pp. 642–644, 2009.
[11]  S. W. Moore, P. Roca-Cusachs, and M. P. Sheetz, “Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing,” Developmental Cell, vol. 19, no. 2, pp. 194–206, 2010.
[12]  E. Klotzsch, M. L. Smith, K. E. Kubow et al., “Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 43, pp. 18267–18272, 2009.
[13]  R. Kirmse, H. Otto, and T. Ludwig, “Interdependency of cell adhesion, force generation and extracellular proteolysis in matrix remodeling,” Journal of Cell Science, vol. 124, no. 11, pp. 1857–1866, 2011.
[14]  T. Hato, N. Pampori, and S. J. Shattil, “Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin ,” Journal of Cell Biology, vol. 141, no. 7, pp. 1685–1695, 1998.
[15]  R. O. Jácamo and E. Rozengurt, “A truncated FAK lacking the FERM domain displays high catalytic activity but retains responsiveness to adhesion-mediated signals,” Biochemical and Biophysical Research Communications, vol. 334, no. 4, pp. 1299–1304, 2005.
[16]  D. Lietha, X. Cai, D. F. J. Ceccarelli, Y. Li, M. D. Schaller, and M. J. Eck, “Structural basis for the autoinhibition of focal adhesion kinase,” Cell, vol. 129, no. 6, pp. 1177–1187, 2007.
[17]  D. D. Schlaepfer and T. Hunter, “Integrin signalling and tyrosine phosphorylation: just the FAKs?” Trends in Cell Biology, vol. 8, no. 4, pp. 151–157, 1998.
[18]  D. D. Schlaepfer, S. K. Hanks, T. Hunter, and P. Van der Geer, “Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase,” Nature, vol. 372, no. 6508, pp. 786–791, 1994.
[19]  K. Vuori, H. Hirai, S. Aizawa, and E. Ruoslahti, “Induction of p130cas signaling complex formation upon integrin-mediated cell adhesion: a role for Src family kinases,” Molecular and Cellular Biology, vol. 16, no. 6, pp. 2606–2613, 1996.
[20]  D. D. Schlaepfer, C. R. Hauck, and D. J. Sieg, “Signaling through focal adhesion kinase,” Progress in Biophysics and Molecular Biology, vol. 71, no. 3-4, pp. 435–478, 1999.
[21]  H.-C. Chen and J.-L. Guan, “Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 10148–10152, 1994.
[22]  A. Khwaja, P. Rodriguez-Viciana, S. Wennstr?m, P. H. Warne, and J. Downward, “Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway,” The EMBO Journal, vol. 16, no. 10, pp. 2783–2793, 1997.
[23]  S. Huveneers and E. H. J. Danen, “Adhesion signaling—crosstalk between integrins, Src and Rho,” Journal of Cell Science, vol. 122, no. 8, pp. 1059–1069, 2009.
[24]  E. Brugnera, L. Haney, C. Grimsley et al., “Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex,” Nature Cell Biology, vol. 4, no. 8, pp. 574–582, 2002.
[25]  E. Kiyokawa, Y. Hashimoto, S. Kobayashi, H. Sugimura, T. Kurata, and M. Matsuda, “Activation of Rac1 by a Crk SH3-binding protein, DOCK180,” Genes and Development, vol. 12, no. 21, pp. 3331–3336, 1998.
[26]  D. Chodniewicz and R. L. Klemke, “Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold,” Biochimica et Biophysica Acta, vol. 1692, no. 2-3, pp. 63–76, 2004.
[27]  N. O. Deakin and C. E. Turner, “Paxillin comes of age,” Journal of Cell Science, vol. 121, no. 15, pp. 2435–2444, 2008.
[28]  J. P. ten Klooster, Z. M. Jaffer, J. Chernoff, and P. L. Hordijk, “Targeting and activation of Rac1 are mediated by the exchange factor β-Pix,” Journal of Cell Biology, vol. 172, no. 5, pp. 759–769, 2006.
[29]  W. T. Arthur, L. A. Petch, and K. Burridge, “Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism,” Current Biology, vol. 10, no. 12, pp. 719–722, 2000.
[30]  X.-D. Ren, W. B. Kiosses, D. J. Sieg, C. A. Otey, D. D. Schlaepfer, and M. A. Schwartz, “Focal adhesion kinase suppresses Rho activity to promote focal adhesion,” Journal of Cell Science, vol. 113, no. 20, pp. 3673–3678, 2000.
[31]  C. Guilluy, V. Swaminathan, R. Garcia-Mata, E. T. O'Brien, R. Superfine, and K. Burridge, “The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins,” Nature Cell Biology, vol. 13, no. 6, pp. 722–728, 2011.
[32]  M. D. Bass, M. R. Morgan, K. A. Roach, J. Settleman, A. B. Goryachev, and M. J. Humphries, “p190RhoGAP is the convergence point of adhesion signals from α5β1 integrin and syndecan-4,” Journal of Cell Biology, vol. 181, no. 6, pp. 1013–1026, 2008.
[33]  N. Marcoux and K. Vuori, “EGF receptor mediates adhesion-dependent activation of the Rac GTPase: a role for phosphatidylinositol 3-kinase and Vav2,” Oncogene, vol. 22, no. 38, pp. 6100–6106, 2003.
[34]  K. M. Yamada and S. Even-Ram, “Integrin regulation of growth factor receptors,” Nature Cell Biology, vol. 4, no. 4, pp. E75–E76, 2002.
[35]  M. A. Schwartz, “Integrin signaling revisited,” Trends in Cell Biology, vol. 11, no. 12, pp. 466–470, 2001.
[36]  L. Moro, L. Dolce, S. Cabodi et al., “Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines,” Journal of Biological Chemistry, vol. 277, no. 11, pp. 9405–9414, 2002.
[37]  G. Panayotou, P. End, M. Aumailley, R. Timpl, and J. Engel, “Domains of laminin with growth-factor activity,” Cell, vol. 56, no. 1, pp. 93–101, 1989.
[38]  J. S. Munger, X. Huang, H. Kawakatsu et al., “The integrin binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis,” Cell, vol. 96, no. 3, pp. 319–328, 1999.
[39]  J. S. Munger and D. Sheppard, “Cross talk among TGF-beta signaling pathways, integrins, and the extracellular matrix,” Cold Spring Harbor Perspectives in Biology, vol. 3, Article ID a005017, 2011.
[40]  D. E. Ingber, “Tensegrity: the architectural basis of cellular mechanotransduction,” Annual Review of Physiology, vol. 59, pp. 575–599, 1997.
[41]  R. P. Martins, J. D. Finan, F. Guilak, and D. A. Lee, “Mechanical regulation of nuclear structure and function,” Annual Review of Biomedical Engineering, vol. 14, pp. 431–455, 2012.
[42]  A. J. Maniotis, C. S. Chen, and D. E. Ingber, “Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 3, pp. 849–854, 1997.
[43]  S. M. Frisch and E. Ruoslahti, “Integrins and anoikis,” Current Opinion in Cell Biology, vol. 9, no. 5, pp. 701–706, 1997.
[44]  S. M. Frisch and R. A. Screaton, “Anoikis mechanisms,” Current Opinion in Cell Biology, vol. 13, no. 5, pp. 555–562, 2001.
[45]  S. G. Kennedy, A. J. Wagner, S. D. Conzen et al., “The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal,” Genes and Development, vol. 11, no. 6, pp. 701–713, 1997.
[46]  J. Downward, “PI 3-kinase, Akt and cell survival,” Seminars in Cell and Developmental Biology, vol. 15, no. 2, pp. 177–182, 2004.
[47]  J. A. Varner, D. A. Emerson, and R. L. Juliano, “Integrin α5β1 expression negatively regulates cell growth: reversal by attachment to fibronectin,” Molecular Biology of the Cell, vol. 6, no. 6, pp. 725–740, 1995.
[48]  D. G. Stupack, X. S. Puente, S. Boutsaboualoy, C. M. Storgard, and D. A. Cheresh, “Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins,” Journal of Cell Biology, vol. 155, no. 4, pp. 459–470, 2001.
[49]  D. Huang, M. Khoe, M. Befekadu et al., “Focal adhesion kinase mediates cell survival via NF-κB and ERK signaling pathways,” American Journal of Physiology, vol. 292, no. 4, pp. C1339–C1352, 2007.
[50]  S.-T. Lim, X. L. Chen, Y. Lim et al., “Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation,” Molecular Cell, vol. 29, no. 1, pp. 9–22, 2008.
[51]  E. H. Danen and K. M. Yamada, “Fibronectin, integrins, and growth control,” Journal of Cellular Physiology, vol. 189, pp. 1–13, 2001.
[52]  X. Zhu, M. Ohtsubo, R. M. B?hmer, J. M. Roberts, and R. K. Assoian, “Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein,” Journal of Cell Biology, vol. 133, no. 2, pp. 391–403, 1996.
[53]  E. H. J. Danen, P. Sonneveld, A. Sonnenberg, and K. M. Yamada, “Dual stimulation of Ras/Mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factor-stimulated cell cycle progression,” Journal of Cell Biology, vol. 151, no. 7, pp. 1413–1422, 2000.
[54]  A. Mettouchi, S. Klein, W. Guo et al., “Integrin-specific activation of Rac controls progression through the G1 phase of the cell cycle,” Molecular Cell, vol. 8, no. 1, pp. 115–127, 2001.
[55]  P. Wang, C. Ballestrem, and C. H. Streuli, “The C terminus of talin links integrins to cell cycle progression,” The Journal of Cell Biology, vol. 195, no. 3, pp. 499–513, 2011.
[56]  N. Li, Y. Zhang, M. J. Naylor et al., “β1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli,” The EMBO Journal, vol. 24, no. 11, pp. 1942–1953, 2005.
[57]  M. J. Naylor, N. Li, J. Cheung et al., “Ablation of β1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation,” Journal of Cell Biology, vol. 171, no. 4, pp. 717–728, 2005.
[58]  R. Xu, C. M. Nelson, J. L. Muschler, M. Veiseh, B. K. Vonderhaar, and M. J. Bissell, “Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specifi c function,” Journal of Cell Biology, vol. 184, no. 1, pp. 57–66, 2009.
[59]  N. Akhtar and C. H. Streuli, “An integrin-ILK-microtubule network orients cell polarity and lumen formation in glandular epithelium,” Nature Cell Biology, vol. 15, pp. 17–27, 2013.
[60]  A. S. Menko and D. Boettiger, “Occupation of the extracellular matrix receptor, integrin, is a control point for myogenic differentiation,” Cell, vol. 51, no. 1, pp. 51–57, 1987.
[61]  F. M. Watt, “Role of integrins in regulating epidermal adhesion, growth and differentiation,” The EMBO Journal, vol. 21, no. 15, pp. 3919–3926, 2002.
[62]  C. Margadant, R. A. Charafeddine, and A. Sonnenberg, “Unique and redundant functions of integrins in the epidermis,” FASEB Journal, vol. 24, no. 11, pp. 4133–4152, 2010.
[63]  F. M. Watt and B. L. M. Hogan, “Out of eden: stem cells and their niches,” Science, vol. 287, no. 5457, pp. 1427–1430, 2000.
[64]  A. Kerever, J. Schnack, D. Vellinga et al., “Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu,” Stem Cells, vol. 25, no. 9, pp. 2146–2157, 2007.
[65]  P. H. Jones and F. M. Watt, “Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression,” Cell, vol. 73, no. 4, pp. 713–724, 1993.
[66]  R. G. Jones, X. Li, P. D. Gray et al., “Conditional deletion of β1 integrins in the intestinal epithelium causes a loss of Hedgehog expression, intestinal hyperplasia, and early postnatal lethality,” Journal of Cell Biology, vol. 175, no. 3, pp. 505–514, 2006.
[67]  L. S. Campos, L. Decker, V. Taylor, and W. Skarnes, “Notch, epidermal growth factor receptor, and β1-integrin pathways are coordinated in neural stem cells,” Journal of Biological Chemistry, vol. 281, no. 8, pp. 5300–5309, 2006.
[68]  I. Taddei, M.-A. Deugnier, M. M. Faraldo et al., “β1 Integrin deletion from the basal compartment of the mammary epithelium affects stem cells,” Nature Cell Biology, vol. 10, no. 6, pp. 716–722, 2008.
[69]  V. Marthiens, I. Kazanis, L. Moss, K. Long, and C. Ffrench-Constant, “Adhesion molecules in the stem cell niche—more than just staying in shape?” Journal of Cell Science, vol. 123, no. 10, pp. 1613–1622, 2010.
[70]  C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science, vol. 276, no. 5317, pp. 1425–1428, 1997.
[71]  J. Fringer and F. Grinnell, “Fibroblast quiescence in floating or released collagen matrices: contribution of the ERK signaling pathway and actin cytoskeletal organization,” Journal of Biological Chemistry, vol. 276, no. 33, pp. 31047–31052, 2001.
[72]  E. A. Klein, L. Yin, D. Kothapalli et al., “Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening,” Current Biology, vol. 19, no. 18, pp. 1511–1518, 2009.
[73]  A. Mammoto, K. M. Connor, T. Mammoto et al., “A mechanosensitive transcriptional mechanism that controls angiogenesis,” Nature, vol. 457, no. 7233, pp. 1103–1108, 2009.
[74]  A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell, vol. 126, no. 4, pp. 677–689, 2006.
[75]  B. Trappmann, J. E. Gautrot, J. T. Connelly et al., “Extracellular-matrix tethering regulates stem-cell fate,” Nature Materials, vol. 11, pp. 642–649, 2012.
[76]  D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000.
[77]  D. Taverna, H. Moher, D. Crowley, L. Borsig, A. Varki, and R. O. Hynes, “Increased primary tumor growth in mice null for β3- or β3/β5-integrins or selectins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 3, pp. 763–768, 2004.
[78]  G. J. Mizejewski, “Role of integrins in cancer: survey of expression patterns,” Proceedings of the Society for Experimental Biology and Medicine, vol. 222, no. 2, pp. 124–138, 1999.
[79]  E. H. J. Danen, “Integrins: regulators of tissue function and cancer progression,” Current Pharmaceutical Design, vol. 11, no. 7, pp. 881–891, 2005.
[80]  E. H. J. Danen and A. Sonnenberg, “Integrins in regulation of tissue development and function,” The Journal of pathology, vol. 201, no. 4, pp. 632–641, 2003.
[81]  W. Guo and F. G. Giancotti, “Integrin signalling during tumour progression,” Nature Reviews Molecular Cell Biology, vol. 5, no. 10, pp. 816–826, 2004.
[82]  K. Olden and K. M. Yamada, “Mechanism of the decrease in the major cell surface protein of chick embryo fibroblasts after transformation,” Cell, vol. 11, no. 4, pp. 957–969, 1977.
[83]  L. C. Plantefaber and R. O. Hynes, “Changes in integrin receptors on oncogenically transformed cells,” Cell, vol. 56, no. 2, pp. 281–290, 1989.
[84]  F. G. Giancotti and E. Ruoslahti, “Elevated levels of the α5β1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells,” Cell, vol. 60, no. 5, pp. 849–859, 1990.
[85]  T. Plath, K. Detjen, M. Welzel et al., “A novel function for the tumor suppressor : induction of anoikis via upregulation of the α5β1 fibronectin receptor,” Journal of Cell Biology, vol. 150, no. 6, pp. 1467–1477, 2000.
[86]  P. A. J. Muller, P. T. Caswell, B. Doyle et al., “Mutant p53 drives invasion by promoting integrin recycling,” Cell, vol. 139, no. 7, pp. 1327–1341, 2009.
[87]  R. C. Bates, D. I. Bellovin, C. Brown et al., “Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma,” Journal of Clinical Investigation, vol. 115, no. 2, pp. 339–347, 2005.
[88]  D. M. Owens, M. R. Romero, C. Gardner, and F. M. Watt, “Suprabasal α6β4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFβ signalling,” Journal of Cell Science, vol. 116, no. 18, pp. 3783–3791, 2003.
[89]  C. Van Waes, K. F. Kozarsky, A. B. Warren et al., “The A9 antigen associated with aggressive human squamous carcinoma is structurally and functionally similar to the newly defined integrin α6β4,” Cancer Research, vol. 51, no. 9, pp. 2395–2402, 1991.
[90]  V. M. Weaver, S. Lelièvre, J. N. Lakins et al., “β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium,” Cancer Cell, vol. 2, no. 3, pp. 205–216, 2002.
[91]  L. Trusolino, A. Bertotti, and P. M. Comoglio, “A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth,” Cell, vol. 107, no. 5, pp. 643–654, 2001.
[92]  C. S. Downer, F. M. Watt, and P. M. Speight, “Loss of α6 and β4 integrin subunits coincides with loss of basement membrane components in oral squamous cell carcinomas,” Journal of Pathology, vol. 171, no. 3, pp. 183–190, 1993.
[93]  M. Gomez and A. Cano, “Expression of β1 integrin receptors in transformed mouse epidermal keratinocytes: upregulation of α5β1 in spindle carcinoma cells,” Molecular Carcinogenesis, vol. 12, no. 3, pp. 153–165, 1995.
[94]  E. H. J. Danen, G. N. P. van Muijen, and D. J. Ruiter, “Role of integrins as signal transducing cell adhesion molecules in human cutaneous melanoma,” Cancer Surveys, vol. 24, pp. 43–65, 1995.
[95]  M.-Y. Hsu, D.-T. Shih, F. E. Meier et al., “Adenoviral gene transfer of β3 integrin subunit induces conversion from radial to vertical growth phase in primary human melanoma,” American Journal of Pathology, vol. 153, no. 5, pp. 1435–1442, 1998.
[96]  R. E. B. Seftor, E. A. Seftor, W. G. Stetler-Stevenson, and M. J. C. Hendrix, “The 72 kDa type IV collagenase is modulated via differential expression of and α5β1 integrins during human melanoma cell invasion,” Cancer Research, vol. 53, no. 14, pp. 3411–3415, 1993.
[97]  S. E. Bojesen, A. Tybj?rg-Hansen, and B. G. Nordestgaard, “Integrin β3 Leu33Pro homozygosity and risk of cancer,” Journal of the National Cancer Institute, vol. 95, no. 15, pp. 1150–1157, 2003.
[98]  B. Felding-Habermann, T. E. O'Toole, J. W. Smith et al., “Integrin activation controls metastasis in human breast cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 1853–1858, 2001.
[99]  S. Takayama, S. Ishii, T. Ikeda, S. Masamura, M. Doi, and M. Kitajima, “The relationship between bone metastasis from human breast cancer and integrin expression,” Anticancer Research, vol. 25, no. 1A, pp. 79–83, 2005.
[100]  C. van den Hoogen, G. van der Horst, H. Cheung, J. T. Buijs, R. C. M. Pelger, and G. van der Pluijm, “Integrin αv expression is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer,” American Journal of Pathology, vol. 179, no. 5, pp. 2559–2568, 2011.
[101]  N. P. McCabe, S. De, A. Vasanji, J. Brainard, and T. V. Byzova, “Prostate cancer specific integrin modulates bone metastatic growth and tissue remodeling,” Oncogene, vol. 26, no. 42, pp. 6238–6243, 2007.
[102]  S. Huveneers, I. Van Den Bout, P. Sonneveld, A. Sancho, A. Sonnenberg, and E. H. J. Danen, “Integrin controls activity and oncogenic potential of primed c-Src,” Cancer Research, vol. 67, no. 6, pp. 2693–2700, 2007.
[103]  J. S. Desgrosellier, L. A. Barnes, D. J. Shields et al., “An integrin -c-Src oncogenic unit promotes anchorage-independence and tumor progression,” Nature Medicine, vol. 15, no. 10, pp. 1163–1169, 2009.
[104]  S. Huveneers, S. Arslan, B. Van De Water, A. Sonnenberg, and E. H. J. Danen, “Integrins uncouple Src-induced morphological and oncogenic transformation,” Journal of Biological Chemistry, vol. 283, no. 19, pp. 13243–13251, 2008.
[105]  K. R. Levental, H. Yu, L. Kass et al., “Matrix crosslinking forces tumor progression by enhancing integrin signaling,” Cell, vol. 139, no. 5, pp. 891–906, 2009.
[106]  B. Bierie and H. L. Moses, “Tumour microenvironment-GFΒ: the molecular Jekyll and Hyde of cancer,” Nature Reviews Cancer, vol. 6, no. 7, pp. 506–520, 2006.
[107]  G. E. Rice and M. P. Bevilacqua, “An inducible endothelial cell surface glycoprotein mediates melanoma adhesion,” Science, vol. 246, no. 4935, pp. 1303–1306, 1989.
[108]  H. Okahara, H. Yagita, K. Miyake, and K. Okumura, “Involvement of very late activation antigen 4 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) in tumor necrosis factor α enhancement of experimental metastasis,” Cancer Research, vol. 54, no. 12, pp. 3233–3236, 1994.
[109]  B. M. C. Chan, N. Matsuura, Y. Takada, B. R. Zetter, and M. E. Hemler, “In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells,” Science, vol. 251, no. 5001, pp. 1600–1602, 1991.
[110]  K. Moran-Jones, A. Ledger, and M. J. Naylor, “β1 integrin deletion enhances progression of prostate cancer in the TRAMP mouse model,” Scientific Reports, vol. 2, p. 526, 2012.
[111]  N. E. Ramirez, Z. Zhang, A. Madamanchi et al., “The α2β1 integrin is a metastasis suppressor in mouse models and human cancer,” Journal of Clinical Investigation, vol. 121, no. 1, pp. 226–237, 2011.
[112]  D. E. White, N. A. Kurpios, D. Zuo et al., “Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction,” Cancer Cell, vol. 6, no. 2, pp. 159–170, 2004.
[113]  L. Huck, S. M. Pontier, D. M. Zuo, and W. J. Muller, “β1-integrin is dispensable for the induction of ErbB2 mammary tumors but plays a critical role in the metastatic phase of tumor progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 35, pp. 15559–15564, 2010.
[114]  T. Tran, B. Barlow, L. O'Rear et al., “Loss of the α2β1 integrin alters human papilloma virus-induced squamous carcinoma progression in vivo and in vitro,” PLoS ONE, vol. 6, no. 10, Article ID e26858, 2011.
[115]  A. Kren, V. Baeriswyl, F. Lehembre et al., “Increased tumor cell dissemination and cellular senescence in the absence of β1-integrin function,” The EMBO Journal, vol. 26, no. 12, pp. 2832–2842, 2007.
[116]  L. E. Reynolds, L. Wyder, J. C. Lively et al., “Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins,” Nature Medicine, vol. 8, no. 1, pp. 27–34, 2002.
[117]  P. P. Provenzano, D. R. Inman, K. W. Eliceiri, H. E. Beggs, and P. J. Keely, “Mammary epithelial-specific disruption of focal adhesion kinase retards tumor formation and metastasis in a transgenic mouse model of human breast cancer,” American Journal of Pathology, vol. 173, no. 5, pp. 1551–1565, 2008.
[118]  H. Lahlou, V. Sanguin-Gendreau, D. Zuo et al., “Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 51, pp. 20302–20307, 2007.
[119]  M. Luo, H. Fan, T. Nagy et al., “Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells,” Cancer Research, vol. 69, no. 2, pp. 466–474, 2009.
[120]  Y. Pylayeva, K. M. Gillen, W. Gerald, H. E. Beggs, L. F. Reichardt, and F. G. Giancotti, “Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling,” Journal of Clinical Investigation, vol. 119, no. 2, pp. 252–266, 2009.
[121]  G. W. McLean, N. H. Komiyama, B. Serrels et al., “Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression,” Genes and Development, vol. 18, no. 24, pp. 2998–3003, 2004.
[122]  M. Friedlander, P. C. Brooks, R. W. Shaffer, C. M. Kincaid, J. A. Varner, and D. A. Cheresh, “Definition of two angiogenic pathways by distinct integrins,” Science, vol. 270, no. 5241, pp. 1500–1502, 1995.
[123]  B. Bader, H. Rayburn, D. Crowley, and R. O. Hynes, “Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all integrins,” Cell, vol. 95, no. 4, pp. 507–519, 1998.
[124]  S. Kim, K. Bell, S. A. Mousa, and J. A. Varner, “Regulation of angiogenesis in vivo by ligation of integrin α5β1 with the central cell-binding domain of fibronectin,” American Journal of Pathology, vol. 156, no. 4, pp. 1345–1362, 2000.
[125]  C. Gaggioli, S. Hooper, C. Hidalgo-Carcedo et al., “Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells,” Nature Cell Biology, vol. 9, no. 12, pp. 1392–1400, 2007.
[126]  C.-Q. Zhu, S. N. Popova, E. R. S. Brown et al., “Integrin α11 regulates IGF2 expression in fibroblasts to enhance tumorigenicity of human non-small-cell lung cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 28, pp. 11754–11759, 2007.
[127]  B. Garmy-Susini, C. J. Avraamides, J. S. Desgrosellier et al., “PI3Kα activates integrin α4β1 to establish a metastatic niche in lymph nodes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 22, pp. 9042–9047, 2013.
[128]  M. J. Humphries, K. Olden, and K. M. Yamada, “A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells,” Science, vol. 233, no. 4762, pp. 467–470, 1986.
[129]  G. P. Curley, H. Blum, and M. J. Humphries, “Integrin antagonists,” Cellular and Molecular Life Sciences, vol. 56, no. 5-6, pp. 427–441, 1999.
[130]  P. C. Brooks, S. Stromblad, R. Klemke, D. Visscher, F. H. Sarkar, and D. A. Cheresh, “Antiintegrin blocks human breast cancer growth and angiogenesis in human skin,” Journal of Clinical Investigation, vol. 96, no. 4, pp. 1815–1822, 1995.
[131]  R. Kerbel and J. Folkman, “Clinical translation of angiogenesis inhibitors,” Nature Reviews Cancer, vol. 2, no. 10, pp. 727–739, 2002.
[132]  S. Hehlgans, M. Haase, and N. Cordes, “Signalling via integrins: implications for cell survival and anticancer strategies,” Biochimica et Biophysica Acta, vol. 1775, no. 1, pp. 163–180, 2007.
[133]  D. Cox, M. Brennan, and N. Moran, “Integrins as therapeutic targets: lessons and opportunities,” Nature Reviews Drug Discovery, vol. 9, no. 10, pp. 804–820, 2010.
[134]  J. S. Desgrosellier and D. A. Cheresh, “Integrins in cancer: biological implications and therapeutic opportunities,” Nature Reviews Cancer, vol. 10, no. 1, pp. 9–22, 2010.
[135]  J. C. Gutheil, T. N. Campbell, P. R. Pierce et al., “Targeted antiangiogenic therapy for cancer using vitaxin: a humanized monoclonal antibody to the integrin ,” Clinical Cancer Research, vol. 6, no. 8, pp. 3056–3061, 2000.
[136]  C. Delbaldo, E. Raymond, K. Vera et al., “Phase I and pharmacokinetic study of etaracizumab (Abegrin), a humanized monoclonal antibody against integrin receptor, in patients with advanced solid tumors,” Investigational New Drugs, vol. 26, no. 1, pp. 35–43, 2008.
[137]  D. G. McNeel, J. Eickhoff, F. T. Lee et al., “Phase I trial of a monoclonal antibody specific for integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion,” Clinical Cancer Research, vol. 11, no. 21, pp. 7851–7860, 2005.
[138]  P. Hersey, J. Sosman, S. O'Day et al., “A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin , ± dacarbazine in patients with stage IV metastatic melanoma,” Cancer, vol. 116, no. 6, pp. 1526–1534, 2010.
[139]  S. A. Mullamitha, N. C. Ton, G. J. M. Parker et al., “Phase I evaluation of a fully human anti- integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors,” Clinical Cancer Research, vol. 13, no. 7, pp. 2128–2135, 2007.
[140]  K. W. Beekman, A. D. Colevas, K. Cooney et al., “Phase II evaluations of cilengitide in asymptomatic patients with androgen-independent prostate cancer: scientific rationale and study design,” Clinical Genitourinary Cancer, vol. 4, no. 4, pp. 299–302, 2006.
[141]  L. B. Nabors, T. Mikkelsen, S. S. Rosenfeld et al., “Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma,” Journal of Clinical Oncology, vol. 25, no. 13, pp. 1651–1657, 2007.
[142]  D. A. Reardon, K. L. Fink, T. Mikkelsen et al., “Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme,” Journal of Clinical Oncology, vol. 26, no. 34, pp. 5610–5617, 2008.
[143]  T. J. MacDonald, C. F. Stewart, M. Kocak et al., “Phase I clinical trial of cilengitide in children with refractory brain tumors: pediatric brain tumor consortium study PBTC-012,” Journal of Clinical Oncology, vol. 26, no. 6, pp. 919–924, 2008.
[144]  A. R. Reynolds, I. R. Hart, A. R. Watson et al., “Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors,” Nature Medicine, vol. 15, no. 4, pp. 392–400, 2009.
[145]  A. D. Ricart, A. W. Tolcher, G. Liu et al., “Volociximab, a chimeric monoclonal antibody that specifically binds α5β1 integrin: a phase l, pharmacokinetic, and biological correlative study,” Clinical Cancer Research, vol. 14, no. 23, pp. 7924–7929, 2008.
[146]  E. H. J. Danen, S.-I. Aota, A. A. van Kraats, K. M. Yamada, D. J. Ruiter, and G. N. P. Van Muijen, “Requirement for the synergy site for cell adhesion to fibronectin depends on the activation state of integrin α5β1,” Journal of Biological Chemistry, vol. 270, no. 37, pp. 21612–21618, 1995.
[147]  P. Khalili, A. Arakelian, G. Chen et al., “A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo,” Molecular Cancer Therapeutics, vol. 5, no. 9, pp. 2271–2280, 2006.
[148]  D. L. Livant, R. K. Brabec, K. J. Pienta et al., “Anti-invasive, antitumorigenic, and antimetastatic activities of the PHSCN sequence in prostate carcinoma,” Cancer Research, vol. 60, no. 2, pp. 309–320, 2000.
[149]  M. E. Cianfrocca, K. A. Kimmel, J. Gallo et al., “Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2), a beta integrin antagonist, in patients with solid tumours,” British Journal of Cancer, vol. 94, no. 11, pp. 1621–1626, 2006.
[150]  W. G. Roberts, E. Ung, P. Whalen et al., “Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271,” Cancer Research, vol. 68, no. 6, pp. 1935–1944, 2008.
[151]  A. Schultze and W. Fiedler, “Therapeutic potential and limitations of new FAK inhibitors in the treatment of cancer,” Expert Opinion on Investigational Drugs, vol. 19, no. 6, pp. 777–788, 2010.
[152]  J. Halder, Y. G. Lin, W. M. Merritt et al., “Therapeutic efficacy of a novel focal adhesion kinase inhibitor TAE226 in ovarian carcinoma,” Cancer Research, vol. 67, no. 22, pp. 10976–10983, 2007.
[153]  V. G. Brunton and M. C. Frame, “Src and focal adhesion kinase as therapeutic targets in cancer,” Current Opinion in Pharmacology, vol. 8, no. 4, pp. 427–432, 2008.
[154]  A. Abdollahi, D. W. Griggs, H. Zieher et al., “Inhibition of integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy,” Clinical Cancer Research, vol. 11, no. 17, pp. 6270–6279, 2005.
[155]  T. Sethi, R. C. Rintoul, S. M. Moore et al., “Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo,” Nature Medicine, vol. 5, no. 6, pp. 662–668, 1999.
[156]  F. Aoudjit and K. Vuori, “Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells,” Oncogene, vol. 20, no. 36, pp. 4995–5004, 2001.
[157]  F. Thomas, J. M. P. Holly, R. Persad, A. Bahl, and C. M. Perks, “Fibronectin confers survival against chemotherapeutic agents but not against radiotherapy in DU145 prostate cancer cells: involvement of the insulin like growth factor-1 receptor,” Prostate, vol. 70, no. 8, pp. 856–865, 2010.
[158]  J. C. Puigvert, S. Huveneers, L. Fredriksson, M. O. H. Veld, B. Van De Water, and E. H. J. Danen, “Cross-talk between integrins and oncogenes modulates chemosensitivity,” Molecular Pharmacology, vol. 75, no. 4, pp. 947–955, 2009.
[159]  N. Cordes, J. Seidler, R. Durzok, H. Geinitz, and C. Brakebusch, “β1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury,” Oncogene, vol. 25, no. 9, pp. 1378–1390, 2006.
[160]  C. C. Park, H. J. Zhang, E. S. Yao, C. J. Park, and M. J. Bissell, “β1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts,” Cancer Research, vol. 68, no. 11, pp. 4398–4405, 2008.
[161]  I. Eke, Y. Deuse, S. Hehlgans et al., “β1 integrin/FAK/cortactin signaling is essential for human head and neck cancer resistance to radiotherapy,” Journal of Clinical Investigation, vol. 122, no. 4, pp. 1529–1540, 2012.
[162]  J.-M. Nam, Y. Onodera, M. J. Bissell, and C. C. Park, “Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin α5β1 and fibronectin,” Cancer Research, vol. 70, no. 13, pp. 5238–5248, 2010.
[163]  D. Lane, N. Goncharenko-Khaider, C. Rancourt, and A. Piché, “Ovarian cancer ascites protects from TRAIL-induced cell death through integrin-mediated focal adhesion kinase and Akt activation,” Oncogene, vol. 29, no. 24, pp. 3519–3531, 2010.
[164]  X. H. Yang, L. M. Flores, Q. Li et al., “Disruption of laminin-integrin-CD151-focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists,” Cancer Research, vol. 70, no. 6, pp. 2256–2263, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133