全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Overview of the Classical Histone Deacetylase Enzymes and Histone Deacetylase Inhibitors

DOI: 10.5402/2012/130360

Full-Text   Cite this paper   Add to My Lib

Abstract:

The important role of histone deacetylase enzymes in regulating gene expression, cellular proliferation, and survival has made them attractive targets for the development of histone deacetylase inhibitors as anticancer drugs. Suberoylanilide hydroxamic acid (Vorinostat, Zolinza), a structural analogue of the prototypical Trichostatin A, was approved by the US Food and Drug Administration for the treatment of advanced cutaneous T-cell lymphoma in 2006. This was followed by approval of the cyclic peptide, depsipeptide (Romidepsin, Istodax) for the same disease in 2009. Currently numerous histone deacetylase inhibitors are undergoing preclinical and clinical trials for the treatment of hematological and solid malignancies. Most of these studies are focused on combinations of histone deacetylase inhibitors with other therapeutic modalities, particularly conventional chemotherapeutics and radiotherapy. The aim of this paper is to provide an overview of the classical histone deacetylase enzymes and histone deacetylase inhibitors with an emphasis on potential combination therapies. 1. Introduction Chromatin is a dynamic structure that, via numerous mechanisms including DNA methylation and posttranslational histone modifications, undergoes remodeling to facilitate metabolic processes including transcription, replication, and repair [1]. One of the well-investigated posttranslational histone modifications is acetylation which was first defined in the 1960s [2, 3]. Histone acetylation is controlled by the opposing actions of two groups of enzymes, namely, histone acetyltransferases (HATs) and histone deacetylases (HDACs) [4–6]. HATs catalyze the transfer of the acetyl moiety of the substrate acetyl-coA to the ε-amino group of lysine residues on histones. This neutralizes the positive charge of histones, weakening their interaction with the negatively charged DNA. This results in a more relaxed, transcriptionally permissive chromatin conformation [7, 8]. HDAC enzymes remove acetyl groups from histones resulting in a more condensed, transcriptionally repressive chromatin state [4, 5]. The 18 mammalian HDAC enzymes identified to date are categorized into two distinct groups. The class III HDAC enzymes which include the sirtuins 1–7 require nicotinamide adenine dinucleotide (NAD+) to deacetylate lysine residues [12, 13]. These have been implicated with numerous diseases and in the process of aging [14]. The remaining 11 enzymes are typically known as the classical HDAC enzymes and will be the focus of the remaining of this paper [9]. An intense interest in function

References

[1]  T. Kouzarides, “Chromatin modifications and their function,” Cell, vol. 128, no. 4, pp. 693–705, 2007.
[2]  V. G. Allfrey, R. Faulkner, and A. E. Mirsky, “Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis,” Proceedings of the National Academy of Sciences of the United States of, vol. 51, no. 5, pp. 786–794, 1964.
[3]  V. G. Allfrey and A. E. Mirsky, “Structural modifications of histones and their possible role in the regulation of RNA synthesis,” Science, vol. 144, no. 3618, p. 559, 1964.
[4]  M. Dokmanovic, C. Clarke, and P. A. Marks, “Histone deacetylase inhibitors: overview and perspectives,” Molecular Cancer Research, vol. 5, no. 10, pp. 981–989, 2007.
[5]  M. H. Kuo and C. D. Allis, “Roles of histone acetyltransferases and deacetylases in gene regulation,” BioEssays, vol. 20, no. 8, pp. 615–626, 1998.
[6]  P. A. Wade, D. Pruss, and A. P. Wolffe, “Histone acetylation: chromatin in action,” Trends in Biochemical Sciences, vol. 22, no. 4, pp. 128–132, 1997.
[7]  S. Y. Roth, J. M. Denu, and C. D. Allis, “Histone acetyltransferases,” Annual Review of Biochemistry, vol. 70, pp. 81–120, 2001.
[8]  B. C. Smith and J. M. Denu, “Chemical mechanisms of histone lysine and arginine modifications,” Biochimica et Biophysica Acta, vol. 1789, no. 1, pp. 45–57, 2009.
[9]  A. J. M. de Ruijter, A. H. Van Gennip, H. N. Caron, S. Kemp, and A. B. P. Van Kuilenburg, “Histone deacetylases (HDACs): characterization of the classical HDAC family,” Biochemical Journal, vol. 370, no. 3, pp. 737–749, 2003.
[10]  I. V. Gregoretti, Y. M. Lee, and H. V. Goodson, “Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis,” Journal of Molecular Biology, vol. 338, no. 1, pp. 17–31, 2004.
[11]  S. Minucci and P. G. Pelicci, “Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer,” Nature Reviews Cancer, vol. 6, no. 1, pp. 38–51, 2006.
[12]  J. Landry, A. Sutton, S. T. Tafrov et al., “The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 11, pp. 5807–5811, 2000.
[13]  K. G. Tanner, J. Landry, R. Sternglanz, and J. M. Denu, “Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14178–14182, 2000.
[14]  M. C. Haigis and L. P. Guarente, “Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction,” Genes and Development, vol. 20, no. 21, pp. 2913–2921, 2006.
[15]  W. M. Yang, Y. L. Yao, J. M. Sun, J. R. Davie, and E. Seto, “Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family,” Journal of Biological Chemistry, vol. 272, no. 44, pp. 28001–28007, 1997.
[16]  J. Taunton, C. A. Hassig, and S. L. Schreiber, “A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p,” Science, vol. 272, no. 5260, pp. 408–411, 1996.
[17]  W. M. Yang, C. Inouye, Y. Zeng, D. Bearss, and E. Seto, “Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 23, pp. 12845–12850, 1996.
[18]  C. M. Grozinger, C. A. Hassig, and S. L. Schreiber, “Three proteins define a class of human histone deacetylases related to yeast Hda1p,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 9, pp. 4868–4873, 1999.
[19]  H. Y. Kao, M. Downes, P. Ordentlich, and R. M. Evans, “Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression,” Genes and Development, vol. 14, no. 1, pp. 55–66, 2000.
[20]  E. Hu, Z. Chen, T. Fredrickson et al., “Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor,” Journal of Biological Chemistry, vol. 275, no. 20, pp. 15254–15264, 2000.
[21]  X. Zhou, P. A. Marks, R. A. Rifkind, and V. M. Richon, “Cloning and characterization of a histone deacetylase, HDAC9,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10572–10577, 2001.
[22]  J. J. Tong, J. Liu, N. R. Bertos, and X. J. Yang, “Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain,” Nucleic Acids Research, vol. 30, no. 5, pp. 1114–1123, 2002.
[23]  L. Gao, M. A. Cueto, F. Asselbergs, and P. Atadja, “Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25748–25755, 2002.
[24]  P. A. Marks, R. A. Rifkind, V. M. Richon, R. Breslow, T. Miller, and W. K. Kelly, “Histone deacetylases and cancer: causes and therapies,” Nature Reviews Cancer, vol. 1, no. 3, pp. 194–202, 2001.
[25]  P. A. Marks, “Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions,” Biochimica et Biophysica Acta, vol. 1799, no. 10-12, pp. 717–725, 2010.
[26]  P. A. Marks and W. S. Xu, “Histone deacetylase inhibitors: potential in cancer therapy,” Journal of Cellular Biochemistry, vol. 107, no. 4, pp. 600–608, 2009.
[27]  M. Namdar, G. Perez, L. Ngo, and P. A. Marks, “Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 46, pp. 20003–20008, 2010.
[28]  S. J. Haggarty, K. M. Koeller, J. C. Wong, C. M. Grozinger, and S. L. Schreiber, “Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4389–4394, 2003.
[29]  R. B. Parmigiani, W. S. Xu, G. Venta-Perez et al., “HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 28, pp. 9633–9638, 2008.
[30]  X. Zhang, Z. Yuan, Y. Zhang et al., “HDAC6 modulates cell motility by altering the acetylation level of cortactin,” Molecular Cell, vol. 27, no. 2, pp. 197–213, 2007.
[31]  A. Villagra, F. Cheng, H. W. Wang et al., “The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance,” Nature Immunology, vol. 10, no. 1, pp. 92–100, 2009.
[32]  M. Yoshida, M. Kijima, M. Akita, and T. Beppu, “Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A,” Journal of Biological Chemistry, vol. 265, no. 28, pp. 17174–17179, 1990.
[33]  M. Dokmanovic and P. A. Marks, “Prospects: histone deacetylase inhibitors,” Journal of Cellular Biochemistry, vol. 96, no. 2, pp. 293–304, 2005.
[34]  P. A. Marks and R. Breslow, “Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug,” Nature Biotechnology, vol. 25, no. 1, pp. 84–90, 2007.
[35]  P. A. Marks, “The clinical development of histone deacetylase inhibitors as targeted anticancer drugs,” Expert Opinion on Investigational Drugs, vol. 19, no. 9, pp. 1049–1066, 2010.
[36]  C. Campàs-Moya, “Romidepsin for the treatment of cutaneous t-cell lymphoma,” Drugs of Today, vol. 45, no. 11, pp. 787–795, 2009.
[37]  M. G?ttlicher, S. Minucci, P. Zhu et al., “Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells,” The EMBO Journal, vol. 20, no. 24, pp. 6969–6978, 2002.
[38]  R. A. Blaheta and J. Cinatl, “Anti-tumor mechanisms of valproate: a novel role for an old drug,” Medicinal Research Reviews, vol. 22, no. 5, pp. 492–511, 2002.
[39]  C. U. Johannessen, “Mechanisms of action of valproate: a commentatory,” Neurochemistry International, vol. 37, no. 2-3, pp. 103–110, 2000.
[40]  G. Rosenberg, “The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees?” Cellular and Molecular Life Sciences, vol. 64, no. 16, pp. 2090–2103, 2007.
[41]  J. E. Bolden, M. J. Peart, and R. W. Johnstone, “Anticancer activities of histone deacetylase inhibitors,” Nature Reviews Drug Discovery, vol. 5, no. 9, pp. 769–784, 2006.
[42]  R. W. Johnstone, “Histone-deacetylase inhibitors: novel drugs for the treatment of cancer,” Nature Reviews Drug Discovery, vol. 1, no. 4, pp. 287–299, 2002.
[43]  W. K. Kelly and P. A. Marks, “Drug insight: Histone deacetylase inhibitors—development of the new targeted anticancer agent suberoylanilide hydroxamic acid,” Nature Clinical Practice Oncology, vol. 2, no. 3, pp. 150–157, 2005.
[44]  W. Tang, T. Luo, E. F. Greenberg, J. E. Bradner, and S. L. Schreiber, “Discovery of histone deacetylase 8 selective inhibitors,” Bioorganic and Medicinal Chemistry Letters, vol. 21, no. 9, pp. 2601–2605, 2011.
[45]  A. Banerjee, C. M. Trivedi, G. Damera, et al., “Trichostatin a abrogates airway constriction, but not inflammation in mouse and human asthma models,” American Journal of Respiratory Cell and Molecular Biology. In press.
[46]  J. H. Choi, S. W. Oh, M. S. Kang, H. J. Kwon, G. T. Oh, and D. Y. Kim, “Trichostatin A attenuates airway inflammation in mouse asthma model,” Clinical and Experimental Allergy, vol. 35, no. 1, pp. 89–96, 2005.
[47]  C. L. Antos, T. A. McKinsey, M. Dreitz et al., “Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors,” Journal of Biological Chemistry, vol. 278, no. 31, pp. 28930–28937, 2003.
[48]  J. Backs and E. N. Olson, “Control of cardiac growth by histone acetylation/deacetylation,” Circulation Research, vol. 98, no. 1, pp. 15–24, 2006.
[49]  M. Haberland, R. L. Montgomery, and E. N. Olson, “The many roles of histone deacetylases in development and physiology: implications for disease and therapy,” Nature Reviews Genetics, vol. 10, no. 1, pp. 32–42, 2009.
[50]  Y. Kong, P. Tannous, G. Lu et al., “Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy,” Circulation, vol. 113, no. 22, pp. 2579–2588, 2006.
[51]  T. A. McKinsey, E. N. Olson, and Berger, “Dual roles of histone deacetylases in the control of cardiac growth,” Novartis Foundation Symposium, vol. 259, pp. 132–145, 2004.
[52]  D. M. Chuang, Y. Leng, Z. Marinova, H. J. Kim, and C. T. Chiu, “Multiple roles of HDAC inhibition in neurodegenerative conditions,” Trends in Neurosciences, vol. 32, no. 11, pp. 591–601, 2009.
[53]  S. E. Touma, J. S. Goldberg, P. Moench et al., “Retinoic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model,” Clinical Cancer Research, vol. 11, no. 9, pp. 3558–3566, 2005.
[54]  B. Briggs, K. Ververis, A. L. Rodd, L. J. L. Foong, F. M. D. Silva, and T. C. Karagiannis, “Photosensitization by iodinated DNA minor groove binding ligands: evaluation of DNA double-strand break induction and repair,” Journal of Photochemistry and Photobiology B, vol. 103, no. 2, pp. 145–152, 2011.
[55]  F. A. A. Kwa, A. Balcerczyk, P. Licciardi, A. El-Osta, and T. C. Karagiannis, “Chromatin modifying agents—the cutting edge of anticancer therapy,” Drug Discovery Today, vol. 16, no. 13-14, pp. 543–547, 2011.
[56]  M. Bots and R. W. Johnstone, “Rational combinations using HDAC inhibitors,” Clinical Cancer Research, vol. 15, no. 12, pp. 3970–3977, 2009.
[57]  S. D. Gore, “Combination therapy with DNA methyltransferase inhibitors in hematologic malignancies,” Nature Clinical Practice Oncology, vol. 2, supplement 1, pp. S30–S35, 2005.
[58]  G. N. Hortobagyi, “Anthracyclines in the treatment of cancer. An overview,” Drugs, vol. 54, no. 4, pp. 1–7, 1997.
[59]  R. C. Young, R. F. Ozols, and C. E. Myers, “The anthracycline antineoplastic drugs,” The New England Journal of Medicine, vol. 305, no. 3, pp. 139–153, 1981.
[60]  L. Pan, J. Lu, X. Wang et al., “Histone deacetylase inhibitor trichostatin a potentiates doxorubicin-induced apoptosis by up-regulating PTEN expression,” Cancer, vol. 109, no. 8, pp. 1676–1688, 2007.
[61]  J. H. Rho, D. Y. Kang, K. J. Park et al., “Doxorubicin induces apoptosis with profile of large-scale DNA fragmentation and without DNA ladder in anaplastic thyroid carcinoma cells via histone hyperacetylation,” International Journal of Oncology, vol. 27, no. 2, pp. 465–471, 2005.
[62]  M. G. Catalano, N. Fortunati, M. Pugliese et al., “Valproic acid, a histone deacetylase inhibitor, enhances sensitivity to doxorubicin in anaplastic thyroid cancer cells,” Journal of Endocrinology, vol. 191, no. 2, pp. 465–472, 2006.
[63]  E. R. Sampson, V. Amin, E. M. Schwarz, R. J. O'Keefe, and R. N. Rosier, “The histone deacetylase inhibitor vorinostat selectively sensitizes fibrosarcoma cells to chemotherapy,” Journal of Orthopaedic Research, vol. 29, no. 4, pp. 623–632, 2011.
[64]  T. C. Karagiannis, H. Kn, and A. El-Osta, “Disparity of histone deacetylase inhibition on repair of radiation-induced DNA damage on euchromatin and constitutive heterochromatin compartments,” Oncogene, vol. 26, no. 27, pp. 3963–3971, 2007.
[65]  L. Sprigg, A. Li, F. Y. M. Choy, and J. Ausió, “Interaction of daunomycin with acetylated chromatin,” Journal of Medicinal Chemistry, vol. 53, no. 17, pp. 6457–6465, 2010.
[66]  Y. Tabe, M. Konopleva, R. Contractor et al., “Up-regulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells,” Blood, vol. 107, no. 4, pp. 1546–1554, 2006.
[67]  S. Hauswald, J. Duque-Afonso, M. M. Wagner et al., “Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes,” Clinical Cancer Research, vol. 15, no. 11, pp. 3705–3715, 2009.
[68]  H. Kim, S.-N. Kim, Y.-S. Park et al., “HDAC inhibitors downregulate MRP2 expression in multidrug resistant cancer cells: implication for chemosensitization,” International Journal of Oncology, vol. 38, no. 3, pp. 807–812, 2011.
[69]  G. Wu, C. Nan, J. C. Rollo, X. Huang, and J. Tian, “Sodium valproate-induced congenital cardiac abnormalities in mice are associated with the inhibition of histone deacetylase,” Journal of Biomedical Science, vol. 17, no. 1, article 16, 2010.
[70]  M. H. Shah, P. Binkley, K. Chan et al., “Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors,” Clinical Cancer Research, vol. 12, no. 13, pp. 3997–4003, 2006.
[71]  T. C. Karagiannis, A. J. Lin, K. Ververis et al., “Trichostatin A accentuates doxorubicin-induced hypertrophy in cardiac myocytes,” Aging, vol. 2, no. 10, pp. 659–668, 2010.
[72]  K. Ververis, A. L. Rodd, M. M. Tang, A. El-Osta, and T. C. Karagiannis, “Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes,” Cellular and Molecular Life Sciences, vol. 68, no. 24, pp. 4101–4114, 2011.
[73]  E. Salvatorelli, S. Guarnieri, P. Menna et al., “Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart: relative importance of vesicular sequestration and impaired efficiency of electron addition,” Journal of Biological Chemistry, vol. 281, no. 16, pp. 10990–11001, 2006.
[74]  D. J. Cao, Z. V. Wang, P. K. Battiprolu et al., “Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 10, pp. 4123–4128, 2011.
[75]  Y. K. Cho, G. H. Eom, H. J. Kee et al., “Sodium valproate, a histone deacetylase inhibitor, but not captopril, prevents right ventricular hypertrophy in rats,” Circulation Journal, vol. 74, no. 4, pp. 760–770, 2010.
[76]  H. J. Bogaard, S. Mizuno, A. A. Al Hussaini et al., “Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 10, pp. 1402–1410, 2011.
[77]  C. M. Arundel and J. T. Leith, “Effects of nucleoside analogs and sodium butyrate on recovery from potentially lethal X ray damage in human colon tumor cells,” International Journal of Radiation Oncology Biology Physics, vol. 13, no. 4, pp. 593–601, 1987.
[78]  J. T. Leith, “Effects of sodium butyrate and 3-aminobenzamide on survival of Chinese hamster HA-1 cells after X radiation,” Radiation Research, vol. 114, no. 1, pp. 186–191, 1988.
[79]  C. M. Arundel, A. S. Glicksman, and J. T. Leith, “Enhancement of radiation injury in human colon tumor cells by the maturational agent sodium butyrate (NaB),” Radiation Research, vol. 104, no. 3, pp. 443–448, 1985.
[80]  Y. L. Chung, Y. H. W. Lee, S. H. Yen, and K. H. Chi, “A novel approach for nasopharyngeal carcinoma treatment uses phenylbutyrate as a protein kinase C modulator: implications for radiosensitization and EBV-targeted therapy,” Clinical Cancer Research, vol. 6, no. 4, pp. 1452–1458, 2000.
[81]  S. Biade, C. C. Stobbe, J. T. Boyd, and J. D. Chapman, “Chemical agents that promote chromatin compaction radiosensitize tumour cells,” International Journal of Radiation Biology, vol. 77, no. 10, pp. 1033–1042, 2001.
[82]  R. Furumai, Y. Komatsu, N. Nishino, S. Khochbin, M. Yoshida, and S. Horinouchi, “Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 1, pp. 87–92, 2001.
[83]  A. Munshi, J. F. Kurland, T. Nishikawa et al., “Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity,” Clinical Cancer Research, vol. 11, no. 13, pp. 4912–4922, 2005.
[84]  J. H. Kim, J. H. Shin, and I. H. Kim, “Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 4, pp. 1174–1180, 2004.
[85]  R. V. Nome, A. Bratland, G. Harman, O. Fodstad, Y. Andersson, and A. H. Ree, “Cell cycle checkpoint signaling involved in histone deacetylase inhibition and radiation-induced cell death,” Molecular Cancer Therapeutics, vol. 4, no. 8, pp. 1231–1238, 2005.
[86]  Y. Zhang, M. Jung, A. Dritschilo, and M. Jung, “Enhancement of radiation sensitivity of human squamous carcinoma cells by histone deacetylase inhibitors,” Radiation Research, vol. 161, no. 6, pp. 667–674, 2004.
[87]  M. Jung, A. Velena, B. Chen, P. A. Petukhov, A. P. Kozikowski, and A. Dritschilo, “Novel HDAC inhibitors with radiosensitizing properties,” Radiation Research, vol. 163, no. 5, pp. 488–493, 2005.
[88]  T. C. Karagiannis, K. N. Harikrishnan, and A. El-Osta, “The histone deacetylase inhibitor, trichostatin A, enhances radiation sensitivity and accumulation of γH2A.X,” Cancer Biology and Therapy, vol. 4, no. 7, pp. 787–793, 2005.
[89]  K. Camphausen, D. Cerna, T. Scott et al., “Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid,” International Journal of Cancer, vol. 114, no. 3, pp. 380–386, 2005.
[90]  P. Chinnaiyan, G. Vallabhaneni, E. Armstrong, S. M. Huang, and P. M. Harari, “Modulation of radiation response by histone deacetylase inhibition,” International Journal of Radiation Oncology Biology Physics, vol. 62, no. 1, pp. 223–229, 2005.
[91]  Y. Zhang, M. Adachi, X. Zhao, R. Kawamura, and K. Imai, “Histone deacetylase inhibitors FK228, N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)amino-methyl]benzamide and m-carboxycinnamic acid bis-hydroxamide augment radiation-induced cell death in gastrointestinal adenocarcinoma cells,” International Journal of Cancer, vol. 110, no. 2, pp. 301–308, 2004.
[92]  K. Camphausen, T. Scott, M. Sproull, and P. J. Tofilon, “Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation,” Clinical Cancer Research, vol. 10, no. 18, pp. 6066–6071, 2004.
[93]  K. Camphausen, W. Burgan, M. Cerra et al., “Enhanced radiation-induced cell killing and prolongation of γH2AX foci expression by the histone deacetylase inhibitor MS-275,” Cancer Research, vol. 64, no. 1, pp. 316–321, 2004.
[94]  C. S. Chen, Y. C. Wang, H. C. Yang et al., “Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation,” Cancer Research, vol. 67, no. 11, pp. 5318–5327, 2007.
[95]  J. E. Shabason, P. J. Tofilon, and K. Camphausen, “Grand rounds at the National Institutes of Health: HDAC inhibitors as radiation modifiers, from bench to clinic,” Journal of Cellular and Molecular Medicine, vol. 15, no. 12, pp. 2735–2744, 2011.
[96]  A. C. Miller, T. Whittaker, A. Thibault, and D. Samid, “Modulation of radiation response of human tumour cells by the differentiation inducers, phenylacetate and phenylbutyrate,” International Journal of Radiation Biology, vol. 72, no. 2, pp. 211–218, 1997.
[97]  Y. L. Chung, A. J. Wang, and L. F. Yao, “Antitumor histone deacetylase inhibitors suppress cutaneous radiation syndrome: implications for increasing therapeutic gain in cancer radiotherapy,” Molecular Cancer Therapeutics, vol. 3, no. 3, pp. 317–325, 2004.
[98]  L. Paoluzzi and W. D. Figg, “Histone deacetylase inhibitors are potent radiation protectants,” Cancer Biology and Therapy, vol. 3, no. 7, pp. 612–613, 2004.
[99]  A. J. Singer and R. A. F. Clark, “Cutaneous wound healing,” The New England Journal of Medicine, vol. 341, no. 10, pp. 738–746, 1999.
[100]  P. Fedorocko, A. Egyed, and A. Vacek, “Irradiation induces increased production of haemopoietic and proinflammatory cytokines in the mouse lung,” International Journal of Radiation Biology, vol. 78, no. 4, pp. 305–313, 2002.
[101]  K. Randall and J. E. Coggle, “Long-term expression of transforming growth factor TGFβ1 in mouse skin after localized β-irradiation,” International Journal of Radiation Biology, vol. 70, no. 3, pp. 351–360, 1996.
[102]  S. Delanian, M. Martin, A. Bravard, C. Luccioni, and J.-L. Lefaix, “Abnormal phenotype of cultured fibroblasts in human skin with chronic radiotherapy damage,” Radiotherapy and Oncology, vol. 47, no. 3, pp. 255–261, 1998.
[103]  S. L. Brown, A. Kolozsvary, J. Liu, S. Ryu, and H. K. Jae, “Histone deacetylase inhibitors protect against and mitigate the lethality of total-body irradiation in mice,” Radiation Research, vol. 169, no. 4, pp. 474–478, 2008.
[104]  A. C. Miller, S. Cohen, M. Stewart, R. Rivas, and P. Lison, “Radioprotection by the histone deacetylase inhibitor phenylbutyrate,” Radiation and Environmental Biophysics, vol. 50, no. 4, pp. 585–596, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133