Heparin promotes the formation of 1° FXaα-ATIII and FXaβ-ATIII complexes from the free enzymes and antithrombin III. It further stimulates the transformations of the 1° complexes into the corresponding 3° complexes. Additionally, it stimulates the degradation of the 1° FXaα-ATIII and FXaβ-ATIII complexes into free FXaα, FXaβ and ATIIIM. Protamine sulfate (PS) stimulates the transformation of FXaα into FXaβ and hence to FXaγ. It also stimulates the transformation of the 1°-, 2°-, and 3°- FXα-ATIII complexes into their corresponding β-complexes. It further promotes the degradation of the 1° FXaα- and FXaβ-ATIII complexes into their corresponding 3°- FXaα- and FXaβ-ATIII complexes, with the concommittant release of FXaγ. The addition of PS to FXa/ATIII/H mixtures results in a reduction in free FXa, ATIII, and 1° Xa-ATIII complex formation, together with the concommittant increase in 3°-FXa- ATIII complex formation and release of FXaγ. The likeliest explanation of these results resides in the removal of the effective free heparin as a consequence of the generation of a stable heparin/PS salt upon the addition of the PS to the FXa/ATIII/H mixtures, thereby effectively lowering clotting times. 1. Introduction Factor X is located at the juncture of the intrinsic and extrinsic coagulation cascade pathways. Factor X has two active forms (FXaα and FXaβ) that differ in molecular weight by about 4000 daltons. Factor Xaβ can be degradatively inactivated (autolyzed) to form FXaγ upon cleavage at the –NH2 terminal of the active site [1–3]. The serpin antithrombin III (ATIII) is the primary naturally occurring inhibitor of Factor Xa. Factor Xa and antithrombin III form a 1?:?1 molar complex via covalent bonding [3–5]. Upon hydrolysis of this bond, a modified form of ATIII is produced (ATIIIM). ATIIIM runs at a slightly higher apparent molecular weight than native ATIII in SDS-PAGE [3, 5, 6]. The polysulfonated glycosaminoglycan heparin (H) is administered clinically as an anticoagulant. H acts to catalyze interactions of ATIII with factors Xa and IIa, among other coagulation factors. Heparin fractions have varying affinity for ATIII, with the smallest fraction of high affinity being the pentasaccharide. Administration of H increases the FXa-ATIII complex formation by at least an order of magnitude [7] or several hundredfold when also in the presence of physiological levels of Ca2+[8–10]. Further, ATIIIM increases 20–30% in the presence of FXa and high-affinity heparin [6, 11]. Positively charged protamine sulfate (PS) has long been used clinically to neutralize heparin
References
[1]
T. Mertons, T. Nakajima, Y. Hayashi, and M. Kuro, “Hemostatic effects of low dose protamine following pulmondary bypass,” American Journal of Hematology, vol. 185, pp. 647–658, 1980.
[2]
K. Kurachi, K. Fujikawa, G. Schmer, and E. W. Davie, “Inhibition of bovine factor IXa and factor Xaβ by antithrombin III,” Biochemistry, vol. 15, no. 2, pp. 373–377, 1976.
[3]
J. Jesty, “Dissociation of complexes and their derivatives formed during inhibition of bovine thrombin and activated factor X by antithrombin III,” Journal of Biological Chemistry, vol. 254, no. 4, pp. 1044–1049, 1979.
[4]
R. D. Rosenberg, “Chemistry of the hemostatic mechanism and its relationship to the action of heparin,” Federation Proceedings, vol. 36, no. 1, pp. 10–18, 1977.
[5]
I. Bjork, C. M. Jackson, and H. Jornvall, “The active site of antithrombin. Release of the same proteolytically cleaved form of the inhibitor from complexes with factor IXa, factor Xa, and thrombin,” Journal of Biological Chemistry, vol. 257, no. 5, pp. 2406–2411, 1982.
[6]
I. Bjork and W. W. Fish, “Production in vitro and properties of a modified form of bovine antithrombin, cleaved at the active site by thrombin,” Journal of Biological Chemistry, vol. 257, no. 16, pp. 9487–9493, 1982.
[7]
P. A. Craig, S. T. Olson, and J. D. Shore, “Transient kinetics of heparin-catalyzed protease inactivation by antithrombin III. Characterization of assembly, product formation, and heparin dissociation steps in the factor Xa reaction,” Journal of Biological Chemistry, vol. 264, no. 10, pp. 5452–5461, 1989.
[8]
A. R. Rezaie, “Calcium enhances heparin catalysis of the antithrombin-factor Xa reaction by a template mechanism: Evidence that calcium alleviates Gla domain antagonism of heparin binding to factor Xa,” Journal of Biological Chemistry, vol. 273, no. 27, pp. 16824–16827, 1998.
[9]
A. R. Rezaie, “Identification of basic residues in the heparin-binding exosite of factor Xa critical for heparin and factor Va binding,” Journal of Biological Chemistry, vol. 275, no. 5, pp. 3320–3327, 2000.
[10]
A. R. Rezaie and S. T. Olson, “Calcium enhances heparin catalysis of the antithrombin-factor Xa reaction by promoting the assembly of an intermediate heparin-antithrombin-factor Xa bridging complex. Demonstration by rapid kinetics studies,” Biochemistry, vol. 39, no. 39, pp. 12083–12090, 2000.
[11]
J. A. Marcum and R. D. Rosenberg, “Anticoagulantly active heparin-like molecules from vascular tissue,” Biochemistry, vol. 23, no. 8, pp. 1730–1737, 1984.
[12]
A. Perkash, “A comparison of the quantitative action of protamine and heparin on blood coagulation. Significance in clinical and laboratory usage,” American Journal of Clinical Pathology, vol. 73, no. 5, pp. 676–681, 1980.
[13]
T. Sugiyama, M. Itoh, M. Ohtawa, and T. Natsuga, “Study on neutralization of low molecular weight heparin (LHG) by protamine sulfate and its neutralization characteristics,” Thrombosis Research, vol. 68, no. 2, pp. 119–129, 1992.
[14]
M. Kontani, A. Amano, T. Nakamura, I. Nakagawa, S. Kawabata, and S. Hamada, “Inhibitory effects of protamines on proteolytic and adhesive activities of Porphyromonas gingivalis,” Infection and Immunity, vol. 67, no. 9, pp. 4917–4920, 1999.
[15]
T. Kitani, S. C. Nagarajan, and J. N. Shanberge, “Effect of protamine on heparin-antithrombin III complexes. In vitro studies,” Thrombosis Research, vol. 17, no. 3-4, pp. 367–374, 1980.
[16]
D. P. Thomas, T. W. Barrowcliffe, and R. E. Merton, “In vivo release of anti-Xa clotting activity by a heparin analogue,” Thrombosis Research, vol. 17, no. 6, pp. 831–840, 1980.
[17]
M. Wolzt, A. Weltermann, M. Nieszpaur-Los et al., “Studies on the neutralizing effects of protamine on unfractionated and low molecular weight heparin (Fragmin?) at the site of activation of the coagulation system in man,” Thrombosis and Haemostasis, vol. 73, no. 3, pp. 439–443, 1995.
[18]
Y. Okajima, S. Kanayama, and Y. Maeda, “Studies on the neutralizing mechanism of antithrombin activity of heparin by protamine,” Thrombosis Research, vol. 24, no. 1-2, pp. 21–29, 1981.
[19]
T. Miyashita, T. Nakajima, Y. Hayashi, and M. Kuro, “Hemostatic effects of low-dose protamine following cardiopulmonary bypass,” American Journal of Hematology, vol. 64, no. 2, pp. 112–115, 2000.
[20]
P. W. Majerus, G. H. Broze Jr., J. P. Miletick, and D. M. Tollefsen, “Anticoagulant, thrombolytic, and antiplatelet drugs,” in The Pharmacological Basis of Therapeutics, A. Goodman, T. W. Gilman, A. S. Nies, and P. Taylor, Eds., pp. 1311–1331, Pergamon Press, New York, NY, USA, 8th edition, 1990.
[21]
A. S. Brecher, K. Hellman, and M. H. Basista, “Coagulation protein function VI: augmentation of anticoagulant function by acetaldehyde-treated heparin.,” Digestive Diseases and Sciences, vol. 44, no. 7, pp. 1349–1355, 1999.
[22]
M. H. Coggin, R. Ahl, A. Roland, D. Beck, and A. S. Brecher, “Protamine sulfate stimulates degradation of factor Xa and the factor Xa-antithrombin complex,” Blood Coagulation and Fibrinolysis, vol. 22, no. 4, pp. 247–253, 2011.
[23]
U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970.
[24]
S. T. Olson and J. D. Shore, “Binding of high affinity heparin to antithrombin III. Characterization of the protein fluorescence enhancement,” Journal of Biological Chemistry, vol. 256, no. 21, pp. 11065–11072, 1981.
[25]
S. T. Olson and J. D. Shore, “Transient kinetics of heparin-catalyzed protease inactivation by antithrombin III. The reaction step limiting heparin turnover in thrombin neutralization,” Journal of Biological Chemistry, vol. 261, no. 28, pp. 13151–13159, 1986.
[26]
S. T. Olson, K. R. Srinivasan, I. Bjork, and J. D. Shore, “Binding of high affinity heparin to antithrombin III. Stopped flow kinetic studies of the binding interaction,” Journal of Biological Chemistry, vol. 256, no. 21, pp. 11073–11079, 1981.
[27]
A. R. Rezaie, “Heparin-binding exosite of factor Xa,” Trends in Cardiovascular Medicine, vol. 10, no. 8, pp. 333–338, 2000.
[28]
S. T. Olson, I. Bjork, R. Sheffer, P. A. Craig, J. D. Shore, and J. Choay, “Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement,” Journal of Biological Chemistry, vol. 267, no. 18, pp. 12528–12538, 1992.
[29]
U. Lindahl, G. Backstrom, L. Thunberg, and I. G. Leder, “Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 11 I, pp. 6551–6555, 1980.
[30]
G. A. Silverman, P. I. Bird, R. W. Carrell et al., “The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature,” Journal of Biological Chemistry, vol. 276, no. 36, pp. 33293–33296, 2001.
[31]
J. Jesty, A. K. Spencer, and Y. Nemerson, “The mechanism of activation of factor X. Kinetic control of alternative pathways leading to the formation of activated factor X,” Journal of Biological Chemistry, vol. 249, no. 17, pp. 5614–5622, 1974.