Autophagy is a self-digesting mechanism responsible for removal of damaged organelles, malformed proteins during biosynthesis, and nonfunctional long-lived proteins by lysosome. Autophagy has been divided into three general types depending on the mechanism by which intracellular materials are delivered into lysosome for degradation that is, microautophagy, chaperone-mediated autophagy (CMA), and macroautophagy. In microautophagy cytoplasm material is sequestered through direct invagination to the lysosomal membrane. Whereas in CMA proteins flagged with pentapeptide motif (KFERQ) were selectively degraded through direct translocation into lysosome. Macroautophagy involves the formation of subcellular double-membrane-bound structures called autophagosomes that contain degradable contents of cytoplasm materials and deliver them into lysosomes for breakdown by lysosomal enzymes. The molecular mechanism of autophagy involves several conserved Atg (autophagy-related) proteins. Systems produce modified complexes Atg8-PE and Atg5-Atg12-Atg16 as autophagy regulators. Autophagy is activated in response to diverse stress and physiological conditions. For example, food deprivation, hyperthermia, and hypoxia are mediated by factors like insulin/IGF-1, m-TOR signaling, FOXO transcription factors, and chaperones. The perturbance in autophagy may lead to several types of cancers, myopathies, and neuromuscular disorders. Several autophagy inducers and inhibitors like 3-methyladenine (3-MA), bafilomycin A1, LY294002 (LY), and Velcade have been used to treat disease is an intense field of study. 1. What Is Autophagy? Before delving into the aspects of autophagy, There ia a well-known answer to the question: What is an autophagy? In the current science, autophagy is a self-digesting mechanism responsible for removal of long-lived proteins, damaged organelles, and malformed proteins during biosynthesis by lysosome [1–3]. The evidence demonstrates that autophagic process is meant for regulating diverse cellular functions including growth, differentiation, response to nutrient deficit and oxidative stress, cell death, and macromolecule and organelle turnover. 2. Autophagy Mechanism Autophagy involves the formation of a double-membrane vesicle, which encapsulates cytoplasm, malformed proteins, long-lived proteins, and organelles and then fuses with lysosomes for degradation. The formation of the double-membrane vesicle is a complex process involving 16 autophagy-related proteins (Atg proteins). Apart from this, two ubiquitin-like conjugation systems are involved in autophagy.
References
[1]
E. H. Baehrecke, “Autophagy: dual roles in life and death?” Nature Reviews Molecular Cell Biology, vol. 6, no. 6, pp. 505–510, 2005.
[2]
A. L. Edinger and C. B. Thompson, “Death by design: apoptosis, necrosis and autophagy,” Current Opinion in Cell Biology, vol. 16, no. 6, pp. 663–669, 2004.
[3]
Y. Kondo, T. Kanzawa, R. Sawaya, and S. Kondo, “The role of autophagy in cancer development and response to therapy,” Nature Reviews Cancer, vol. 5, no. 9, pp. 726–734, 2005.
[4]
T. Yorimitsu and D. J. Klionsky, “Autophagy: molecular machinery for self-eating,” Cell Death and Differentiation, vol. 12, no. 2, pp. 1542–1552, 2005.
[5]
D. J. Klionsky, “The molecular machinery of autophagy: unanswered questions,” Journal of Cell Science, vol. 118, no. 1, pp. 7–18, 2005.
[6]
K. Suzuki and Y. Ohsumi, “Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae,” FEBS Letters, vol. 581, no. 11, pp. 2156–2161, 2007.
[7]
B. Levine and G. Kroemer, “Autophagy in the pathogenesis of disease,” Cell, vol. 132, no. 1, pp. 27–42, 2008.
[8]
D. J. Klionsky and S. D. Emr, “Autophagy as a regulated pathway of cellular degradation,” Science, vol. 290, no. 5497, pp. 1717–1721, 2000.
[9]
A. M. Cuervo, “Autophagy: in sickness and in health,” Trends in Cell Biology, vol. 14, no. 2, pp. 70–77, 2004.
[10]
C. T. Chu, “Eaten alive: autophagy and neuronal cell death after hypoxia-ischemia,” American Journal of Pathology, vol. 172, no. 2, pp. 284–287, 2008.
[11]
A. Meléndez, Z. Tallóczy, M. Seaman, E. L. Eskelinen, D. H. Hall, and B. Levine, “Autophagy genes are essential for dauer development and life-span extension in C. elegans,” Science, vol. 301, no. 5638, pp. 1387–1391, 2003.
[12]
T. Yorimitsu, S. Zaman, J. R. Broach, and D. J. Klionsky, “Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 18, no. 10, pp. 4180–4189, 2007.
[13]
T. Noda and Y. Ohsumi, “Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast,” Journal of Biological Chemistry, vol. 273, no. 7, pp. 3963–3966, 1998.
[14]
J. Liang, S. H. Shao, Z. X. Xu et al., “The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis,” Nature Cell Biology, vol. 9, no. 2, pp. 218–224, 2007.
[15]
M. Lippai, G. Csikós, P. Maróy, T. Lukácsovich, G. Juhász, and M. Sass, “SNF4Aγ, the Drosophila AMPK γ subunit is required for regulation of developmental and stress-induced autophagy,” Autophagy, vol. 4, no. 4, pp. 476–486, 2008.
[16]
P. Syntichaki, K. Troulinaki, and N. Tavernarakis, “eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans,” Nature, vol. 445, no. 7130, pp. 922–926, 2007.
[17]
M. Hansen, S. Taubert, D. Crawford, N. Libina, S. J. Lee, and C. Kenyon, “Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans,” Aging Cell, vol. 6, no. 1, pp. 95–110, 2007.
[18]
K. Z. Pan, J. E. Palter, A. N. Rogers et al., “Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans,” Aging Cell, vol. 6, no. 1, pp. 111–119, 2007.
[19]
N. Tavernarakis, “Ageing and the regulation of protein synthesis: a balancing act?” Trends in Cell Biology, vol. 18, no. 5, pp. 228–235, 2008.
[20]
R. Scherz-Shouval and Z. Elazar, “ROS, mitochondria and the regulation of autophagy,” Trends in Cell Biology, vol. 17, no. 9, pp. 422–427, 2007.
[21]
P. Codogno and A. J. Meijer, “Autophagy and signaling: their role in cell survival and cell death,” Cell Death and Differentiation, vol. 12, supplement 2, pp. 1509–1518, 2005.
[22]
D. Crighton, S. Wilkinson, J. O'Prey et al., “DRAM, a p53-induced modulator of autophagy, is critical for apoptosis,” Cell, vol. 126, no. 1, pp. 121–134, 2006.
[23]
E. Tasdemir, M. C. Maiuri, L. Galluzzi et al., “Regulation of autophagy by cytoplasmic p53,” Nature Cell Biology, vol. 10, no. 6, pp. 676–687, 2008.
[24]
S. Kumar and D. Cakouros, “Transcriptional control of the core cell-death machinery,” Trends in Biochemical Sciences, vol. 29, no. 4, pp. 193–199, 2004.
[25]
S. Polager, M. Ofir, and D. Ginsberg, “E2F1 regulates autophagy and the transcription of autophagy genes,” Oncogene, vol. 27, no. 35, pp. 4860–4864, 2008.
[26]
J. Zhao, J. J. Brault, A. Schild et al., “FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells,” Cell Metabolism, vol. 6, no. 6, pp. 472–483, 2007.
[27]
S. I. Imai, C. M. Armstrong, M. Kaeberlein, and L. Guarente, “Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase,” Nature, vol. 403, no. 6771, pp. 795–800, 2000.
[28]
H. A. Tissenbaum and L. Guarente, “Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans,” Nature, vol. 410, no. 6825, pp. 227–230, 2001.
[29]
M. Kaeberlein, M. McVey, and L. Guarente, “The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms,” Genes and Development, vol. 13, no. 19, pp. 2570–2580, 1999.
[30]
J. G. Wood, B. Rogina, S. Lavu et al., “Sirtuin activators mimic caloric restriction and delay ageing in metazoans,” Nature, vol. 430, no. 7000, pp. 686–689, 2004.
[31]
H. L. In, L. Cao, R. Mostoslavsky et al., “A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3374–3379, 2008.
[32]
A. Massey, C. Zhang, and A. Cuervo, “Chaperone-mediated autophagy in aging and disease,” Current Topics in Developmental Biology, vol. 73, pp. 205–235, 2006.
[33]
J. F. Dice, “Peptide sequences that target cytosolic proteins for lysosomal proteolysis,” Trends in Biochemical Sciences, vol. 15, no. 8, pp. 305–309, 1990.
[34]
H. L. Chiang, S. R. Terlecky, C. P. Plant, and J. F. Dice, “A role for a 70-kilodaton heat shock protein in lysosomal degradation of intracellular proteins,” Science, vol. 246, no. 4928, pp. 382–385, 1989.
[35]
A. L. Kovács, Z. Pálfia, G. Réz, T. Vellai, and J. Kovács, “Sequestration revisited: Integrating traditional electron microscopy, de novo assembly and new results,” Autophagy, vol. 3, no. 6, pp. 655–662, 2007.
[36]
A. Majesk and J. Dice, “Mechanisms of chaperone-mediated autophagy,” The International Journal of Biochemistry & Cell Biology, vol. 36, pp. 2435–2444, 2004.
[37]
A. M. Cuervo and J. F. Dice, “A receptor for the selective uptake and degradation of proteins by lysosomes,” Science, vol. 273, no. 5274, pp. 501–503, 1996.
[38]
N. Salvador, C. Aguado, M. Horst, and E. Knecht, “Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state,” Journal of Biological Chemistry, vol. 275, no. 35, pp. 27447–27456, 2000.
[39]
F. A. Agarraberes, S. R. Terlecky, and J. F. Dice, “An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation,” Journal of Cell Biology, vol. 137, no. 4, pp. 825–834, 1997.
[40]
S. Terlecky and J. Dice, “Polypeptide import and degradation by isolated lysosomes,” The Journal of Biological Chemistry, vol. 268, pp. 23490–23495, 1993.
[41]
F. Aniento, A. G. Papavassiliou, E. Knecht, and E. Roche, “Selective uptake and degradation of c-Fos and v-Fos by rat liver lysosomes,” FEBS Letters, vol. 390, no. 1, pp. 47–52, 1996.
[42]
S. S. Wing, H. L. Chiang, A. L. Goldberg, and J. F. Dice, “Proteins containing peptide sequences related to Lys-Phe-Glu-Arg-Gln are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats,” Biochemical Journal, vol. 275, no. 1, pp. 165–169, 1991.
[43]
A. M. Cuervo, E. Knecht, S. R. Terlecky, and J. F. Dice, “Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation,” American Journal of Physiology, vol. 269, no. 5, pp. C1200–C1208, 1995.
[44]
R. Kiffin, C. Christian, E. Knecht, and A. M. Cuervo, “Activation of chaperone-mediated autophagy during oxidative stress,” Molecular Biology of the Cell, vol. 15, no. 11, pp. 4829–4840, 2004.
[45]
A. M. Cuervo, H. Hildebrand, E. M. Bomhard, and J. F. Dice, “Direct lysosomal uptake of α2-microglobulin contributes to chemically induced nephropathy,” Kidney International, vol. 55, no. 2, pp. 529–545, 1999.
[46]
D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000.
[47]
J. C. Reed, “Mechanisms of apoptosis,” The American Journal of Pathology, vol. 39, pp. 1415–1430, 2000.
[48]
H. S. Kim, J. W. Lee, Y. H. Soung et al., “Inactivating mutations of caspase-8 gene in colorectal carcinomas,” Gastroenterology, vol. 125, no. 3, pp. 708–715, 2003.
[49]
J. W. Lee, Y. H. Soung, S. Y. Kim et al., “Inactivating mutations of proapoptotic Bad gene in human colon cancers,” Carcinogenesis, vol. 25, no. 8, pp. 1371–1376, 2004.
[50]
S. H. Lee, M. S. Shin, W. S. Park et al., “Alterations of Fas (Apo-1/CD95) gene in non-small cell lung cancer,” Oncogene, vol. 18, no. 25, pp. 3754–3760, 1999.
[51]
M. S. Shin, H. S. Kim, C. S. Kang et al., “Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas,” Blood, vol. 99, no. 11, pp. 4094–4099, 2002.
[52]
M. R. Kang, M. S. Kim, J. E. Oh et al., “Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATGI2 in gastric and colorectal cancers with microsatellite instability,” Journal of Pathology, vol. 217, no. 5, pp. 702–706, 2009.
[53]
M. S. Kim, E. G. Jeong, C. H. Ahn, S. S. Kim, S. H. Lee, and N. J. Yoo, “Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability,” Human Pathology, vol. 39, no. 7, pp. 1059–1063, 2008.
[54]
J. W. Lee, E. G. Jeong, S. H. Lee, N. J. Yoo, and S. H. Lee, “Somatic mutations of BECN1, an autophagy-related gene, in human cancers,” APMIS, vol. 115, no. 6, pp. 750–756, 2007.
[55]
V. M. Aita, X. H. Liang, V. V. V. S. Murty et al., “Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21,” Genomics, vol. 59, no. 1, pp. 59–65, 1999.
[56]
J. Marx, “Autophagy: is it cancer's friend or foe?” Science, vol. 312, no. 5777, pp. 1160–1161, 2006.
[57]
J. Thorburn, F. Moore, A. Rao et al., “Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells,” Molecular Biology of the Cell, vol. 16, no. 3, pp. 1189–1199, 2005.
[58]
K. R. Mills, M. Reginato, J. Debnath, B. Queenan, and J. S. Brugge, “Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 10, pp. 3438–3443, 2004.
[59]
E. M. Hammond, C. L. Brunet, G. D. Johnson et al., “Homology between a human apoptosis specific protein and the product of APG5, a gene involved in autophagy in yeast,” FEBS Letters, vol. 425, no. 3, pp. 391–395, 1998.
[60]
D. J. Klionsky, “Autophagy: from phenomenology to molecular understanding in less than a decade,” Nature Reviews Molecular Cell Biology, vol. 8, no. 11, pp. 931–937, 2007.
[61]
I. Tanida, E. Tanida-Miyake, M. Komatsu, T. Ueno, and E. Kominami, “Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p,” Journal of Biological Chemistry, vol. 277, no. 16, pp. 13739–13744, 2002.
[62]
S. Yousefi, R. Perozzo, I. Schmid et al., “Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis,” Nature Cell Biology, vol. 8, no. 10, pp. 1124–1132, 2006.
[63]
P. Boya, R. A. Gonzalez-Polo, N. Casares, et al., “Inhibition of macroautophagy triggers apoptosis,” Molecular and Cellular Biology, vol. 25, pp. 1025–1040, 2005.
[64]
J. J. Lum, D. E. Bauer, M. Kong et al., “Growth factor regulation of autophagy and cell survival in the absence of apoptosis,” Cell, vol. 120, no. 2, pp. 237–248, 2005.
[65]
Z. Yue, S. Jin, C. Yang, A. J. Levine, and N. Heintz, “Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 15077–15082, 2003.
[66]
X. Qu, J. Yu, G. Bhagat, et al., “Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene,” The Journal of Clinical Investigation, vol. 112, pp. 1809–1820, 2003.
[67]
Y. Kondo, T. Kanzawa, R. Sawaya, and S. Kondo, “The role of autophagy in cancer development and response to therapy,” Nature Reviews Cancer, vol. 5, no. 9, pp. 726–734, 2005.
[68]
Z. Feng, H. Zhang, A. J. Levine, and S. Jin, “The coordinate regulation of the p53 and mTOR pathways in cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 23, pp. 8204–8209, 2005.
[69]
S. Arico, A. Petiot, C. Bauvy et al., “The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway,” Journal of Biological Chemistry, vol. 276, no. 38, pp. 35243–35246, 2001.
[70]
S. Pattingre, A. Tassa, X. Qu et al., “Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy,” Cell, vol. 122, no. 6, pp. 927–939, 2005.
[71]
L. Yu, F. Wan, S. Dutta et al., “Autophagic programmed cell death by selective catalase degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 13, pp. 4952–4957, 2006.
[72]
T. Shintani and D. J. Klionsky, “Autophagy in health and disease: a double-edged sword,” Science, vol. 306, no. 5698, pp. 990–995, 2004.
[73]
N. Mizushima, A. Yamamoto, M. Matsui, T. Yoshimori, and Y. Ohsumi, “In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker,” Molecular Biology of the Cell, vol. 15, no. 3, pp. 1101–1111, 2004.
[74]
D. Kaneda, K. Sugie, A. Yamamoto et al., “A novel form of autophagic vacuolar myopathy with late-onset and multiorgan involvement,” Neurology, vol. 61, no. 1, pp. 128–131, 2003.
[75]
I. Nishino, M. C. V. Malicdan, K. Murayama, I. Nonaka, Y. K. Hayashi, and S. Noguchi, “Molecular pathomechanism of distal myopathy with rimmed vacuoles,” Acta Myologica, vol. 24, no. 2, pp. 80–83, 2005.
[76]
I. Nonaka, N. Sunohara, S. Ishiura, and E. Satoyoshi, “Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation,” Journal of the Neurological Sciences, vol. 51, no. 1, pp. 141–155, 1981.
[77]
M. M. Hippert, P. S. O'Toole, and A. Thorburn, “Autophagy in cancer: good, bad, or both?” Cancer Research, vol. 66, no. 19, pp. 9349–9351, 2006.
[78]
C. Yan, M. Tanaka, K. Sugie et al., “A new congenital form of X-linked autophagic vacuolar myopathy,” Neurology, vol. 65, no. 7, pp. 1132–1134, 2005.
[79]
M. C. V. Malicdan, S. Noguchi, and I. Nishino, “Autophagy in a mouse model of distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy,” Autophagy, vol. 3, no. 4, pp. 396–398, 2007.
[80]
I. Nishino, J. Fu, K. Tanji et al., “Primary LAMP-2 deficiency causes X-linked vacoular cardiomyopathy and myopathy (Danon disease),” Nature, vol. 406, no. 6798, pp. 906–910, 2000.
[81]
M. J. Danon, S. J. Oh, S. DiMauro, et al., “Lysosomal glycogen storage disease with normal acid maltase,” Neurology, vol. 31, no. 1, pp. 51–57, 1981.
[82]
I. Nishino, “Autophagic vacuolar myopathies,” Current Neurology and Neuroscience Reports, vol. 3, pp. 64–69, 2003.
[83]
J. F. Dice, “Chaperone-mediated autophagy,” Autophagy, vol. 3, no. 4, pp. 295–299, 2007.
[84]
A. C. Massey, C. Zhang, and A. M. Cuervo, “Chaperone-mediated autophagy in aging and disease,” Current Topics in Developmental Biology, vol. 73, pp. 205–235, 2006.
[85]
Y. Tanaka, G. Guhde, A. Suter et al., “Accumulation of autophagic vacuoles and cardiomyopathy LAMP-2-deficient mice,” Nature, vol. 406, no. 6798, pp. 902–906, 2000.
[86]
H. Kalimo, M. L. Savontaus, H. Lang et al., “X-linked myopathy with excessive autophagy: a new hereditary muscle disease,” Annals of Neurology, vol. 23, no. 3, pp. 258–265, 1988.
[87]
J. P. Louboutin, M. Villanova, B. Lucas-Héron, and M. Fardeau, “X-linked vacuolated myopathy: membrane attack complex deposition on muscle fiber membranes with calcium accumulation on sarcolemma,” Annals of Neurology, vol. 41, no. 1, pp. 117–120, 1997.
[88]
M. Villanova, J. P. Louboutin, D. Chateau et al., “X-linked vacuolated myopathy: complement membrane attack complex on surface membrane of injured muscle fibers,” Annals of Neurology, vol. 37, no. 5, pp. 637–645, 1995.
[89]
C. Yan, M. Tanaka, K. Sugie et al., “A new congenital form of X-linked autophagic vacuolar myopathy,” Neurology, vol. 65, no. 7, pp. 1132–1134, 2005.
[90]
N. Raben, P. Plotz, and B. J. Byrne, “Acid α-glucosidase deficiency (glycogenosis type II, pompe disease),” Current Molecular Medicine, vol. 2, no. 2, pp. 145–166, 2002.
[91]
J. Smith, H. Zellweger, and A. K. Afifi, “Muscular form of glycogenosis, type II (Pompe),” Neurology, vol. 17, no. 6, pp. 537–549, 1967.
[92]
M. L. C. Hagemans, L. P. F. Winkel, P. A. Van Doorn et al., “Clinical manifestation and natural course of late-onset Pompe's disease in 54 Dutch patients,” Brain, vol. 128, no. 3, pp. 671–677, 2005.
[93]
M. C. Dalakas, “Sporadic inclusion body myositis—diagnosis, pathogenesis and therapeutic strategies,” Nature Clinical Practice Neurology, vol. 2, no. 8, pp. 437–447, 2006.
[94]
V. Askanas and W. K. Engel, “Inclusion-body myositis: muscle-fiber molecular pathology and possible pathogenic significance of its similarity to Alzheimer's and Parkinson's disease brains,” Acta Neuropathologica, vol. 116, no. 6, pp. 583–595, 2008.
[95]
V. Askanas, W. K. Engel, and A. Nogalska, “Inclusion body myositis: a degenerative muscle disease associated with intra-muscle fiber multi-protein aggregates, proteasome inhibition, endoplasmic reticulum stress and decreased lysosomal degradation: mini-symposium: protein aggregate myopathies,” Brain Pathology, vol. 19, no. 3, pp. 493–506, 2009.
[96]
Y. Tsuruta, A. Furuta, K. Furuta, T. Yamada, J. I. Kira, and T. Iwaki, “Expression of the lysosome-associated membrane proteins in myopathies with rimmed vacuoles,” Acta Neuropathologica, vol. 101, no. 6, pp. 579–584, 2001.
[97]
A. M. Cuervo, L. Stafanis, R. Fredenburg, P. T. Lansbury, and D. Sulzer, “Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy,” Science, vol. 305, no. 5688, pp. 1292–1295, 2004.
[98]
A. M. Cuervo, S. R. Terlecky, J. F. Dice, and E. Knecht, “Selective binding and uptake of ribonuclease A and glyceraldehyde-3- phosphate dehydrogenase by isolated rat liver lysosomes,” Journal of Biological Chemistry, vol. 269, no. 42, pp. 26374–26380, 1994.
[99]
A. M. Cuervo, J. F. Dice, and E. Knecht, “A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins,” Journal of Biological Chemistry, vol. 272, no. 9, pp. 5606–5615, 1997.
[100]
F. Aniento, E. Roche, A. M. Cuervo, and E. Knecht, “Uptake and degradation of glyceraldehyde-3-phosphate dehydrogenase by rat liver lysosomes,” Journal of Biological Chemistry, vol. 268, no. 14, pp. 10463–10470, 1993.
[101]
W. K. Engel and V. Askanas, “Inclusion-body myositis: clinical, diagnostic, and pathologic aspects,” Neurology, vol. 66, no. 2, pp. S20–S29, 2006.
[102]
T. Kumamoto, H. Ueyama, H. Tsumura, I. Toyoshima, and T. Tsuda, “Expression of lysosome-related proteins and genes in the skeletal muscles of inclusion body myositis,” Acta Neuropathologica, vol. 107, no. 1, pp. 59–65, 2004.
[103]
G. Bj?rk?y, T. Lamark, A. Brech et al., “p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death,” Journal of Cell Biology, vol. 171, no. 4, pp. 603–614, 2005.
[104]
M. L. Seibenhener, J. R. Babu, T. Geetha, H. C. Wong, N. R. Krishna, and M. W. Wooten, “Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation,” Molecular and Cellular Biology, vol. 24, no. 18, pp. 8055–8068, 2004.
[105]
A. Nogalska, C. Terracciano, C. D'Agostino, W. King Engel, and V. Askanas, “p62/SQSTM1 is overexpressed and prominently accumulated in inclusions of sporadic inclusion-body myositis muscle fibers, and can help differentiating it from polymyositis and dermatomyositis,” Acta Neuropathologica, vol. 118, no. 3, pp. 407–413, 2009.
[106]
J. N. Keller, K. B. Hanni, and W. R. Markesbery, “Impaired proteasome function in Alzheimer’s disease,” Journal of Neurochemistry, vol. 75, pp. 436–439, 2000.
[107]
W. X. Ding and X. M. Yin, “Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome,” Autophagy, vol. 4, no. 2, pp. 141–150, 2008.
[108]
S. Oddo, “The ubiquitin-proteasome system in Alzheimer’s disease,” Journal of Cellular and Molecular Medicine, vol. 12, pp. 363–373, 2008.
[109]
M. Martinez-Vicente and A. M. Cuervo, “Autophagy and neurodegeneration: when the cleaning crew goes on strike,” Lancet Neurology, vol. 6, no. 4, pp. 352–361, 2007.
[110]
R. A. Nixon, “Autophagy, amyloidogenesis and Alzheimer disease,” Journal of Cell Science, vol. 120, no. 23, pp. 4081–4091, 2007.
[111]
J. J. Shacka, K. A. Roth, and J. Zhang, “The autophagy-lysosomal degradation pathway: role in neurodegenerative disease and therapy,” Frontiers in Bioscience, vol. 13, no. 2, pp. 718–736, 2008.
[112]
R. A. Nixon, “Autophagy in neurodegenerative disease: friend, foe or turncoat?” Trends in Neurosciences, vol. 29, no. 9, pp. 528–535, 2006.
[113]
M. Badadani, A. Nalbandian, G. D. Watts et al., “VCP associated inclusion body myopathy and paget disease of bone knock-in mouse model exhibits tissue pathology typical of human disease,” PLoS ONE, vol. 5, no. 10, article e13183, 2010.
[114]
W. Bursch, “The autophagosomal-lysosomal compartment in programmed cell death,” Cell Death and Differentiation, vol. 8, no. 6, pp. 569–581, 2001.
[115]
P. O. Seglen and P. B. Gordon, “3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 6, pp. 1889–1892, 1982.
[116]
E. J. Bowman, A. Siebers, and K. Altendorf, “Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 21, pp. 7972–7976, 1988.
[117]
K. Yamanaka, Y. Sasagawa, and T. Ogura, “Recent advances in p97/VCP/Cdc48 cellular functions,” Biochimica et Biophysica Acta, vol. 1823, no. 1, pp. 130–137, 2011.
[118]
R. B. Shirley, I. Kaddour-Djebbar, D. M. Patel, V. Lakshmikanthan, R. W. Lewis, and M. V. Kumar, “Combination of proteasomal inhibitors lactacystin and MG132 induced synergistic apoptosis in prostate cancer cells,” Neoplasia, vol. 7, no. 12, pp. 1104–1111, 2005.