全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Senescence-Accelerated Mice P8: A Tool to Study Brain Aging and Alzheimer's Disease in a Mouse Model

DOI: 10.5402/2012/917167

Full-Text   Cite this paper   Add to My Lib

Abstract:

The causes of aging remain unknown, but they are probably intimately linked to a multifactorial process that affects cell networks to varying degrees. Although a growing number of aging and Alzheimer’s disease (AD) animal models are available, a more comprehensive and physiological mouse model is required. In this context, the senescence-accelerated mouse prone 8 (SAMP8) has a number of advantages, since its rapid physiological senescence means that it has about half the normal lifespan of a rodent. In addition, according to data gathered over the last five years, some of its behavioral traits and histopathology resemble AD human dementia. SAMP8 has remarkable pathological similarities to AD and may prove to be an excellent model for acquiring more in-depth knowledge of the age-related neurodegenerative processes behind brain senescence and AD in particular. We review these facts and particularly the data on parameters related to neurodegeneration. SAMP8 also shows signs of aging in the immune, vascular, and metabolic systems, among others. 1. Introduction to the Model: The Origin of Senescence-Accelerated Mouse Strains The free radical and mitochondrial theories of aging seem to be the two most prominent theories that have survived the test of time [1, 2]. These theories claim that oxidative stress within mitochondria can lead to a vicious cycle in which damaged mitochondria produce increased amounts of reactive oxygen species, leading in turn to frailty and progressive disability. If aging-associated processes result from oxidative stress, then some of the most prevalent neurodegenerative diseases associated mainly with the deleterious effects of time on cellular mechanisms can also be linked to an imbalance in the homeostatic mechanism controlling oxidative processes in the whole organism and particularly in brain [3]. The main neurodegenerative diseases are Alzheimer’s (AD), Parkinson’s, Huntington’s, or amyotrophic lateral sclerosis [4, 5]. Of these, AD is the most prevalent. Many problems have had to be overcome in the last two decades of research on aging and associated neurodegenerative diseases. These include a lack of diagnostic markers or detection as well as difficulties in discovering the main molecular and cellular pathways and the causes of the deleterious effects of senescence. In basic research, the main stumbling block has clearly been the lack of an in vivo model that naturally assimilates what happens in humans. Aging models are slow or include rare and specific mutations, such as mutated Klotho protein [6]. In the case of AD, the

References

[1]  D. Harman, “Aging: a theory based on free radical and radiation chemistry,” Journal of Gerontology, vol. 11, no. 3, pp. 298–300, 1956.
[2]  D. Harman, “The free radical theory of aging,” Antioxidants and Redox Signaling, vol. 5, no. 5, pp. 557–561, 2003.
[3]  M. A. Smith, G. Perry, P. L. Richey et al., “Oxidative damage in Alzheimer's,” Nature, vol. 382, no. 6587, pp. 120–121, 1996.
[4]  X. Zhu, A. K. Raina, G. Perry, and M. A. Smith, “Alzheimer's disease: the two-hit hypothesis,” The Lancet Neurology, vol. 3, no. 4, pp. 219–226, 2004.
[5]  X. Zhu, H. G. Lee, G. Perry, and M. A. Smith, “Alzheimer disease, the two-hit hypothesis: an update,” Biochimica et Biophysica Acta, vol. 1772, no. 4, pp. 494–502, 2007.
[6]  O. M. Kuro, “Klotho,” Pflügers Archives European Journal of Physiology, vol. 459, no. 2, pp. 333–343, 2010.
[7]  M. K. Ahlijanian, N. X. Barrezueta, R. D. Williams et al., “Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 6, pp. 2910–2915, 2000.
[8]  J. Avila, E. Gómez De Barreda, T. Engel et al., “Tau kinase i overexpression induces dentate gyrus degeneration,” Neurodegenerative Diseases, vol. 7, no. 1–3, pp. 13–15, 2010.
[9]  T. Takeda, T. Matsushita, M. Kurozumi, K. Takemura, K. Higuchi, and M. Hosokawa, “Pathobiology of the Senescence-accelerated Mouse (SAM),” Experimental Gerontology, vol. 32, no. 1-2, pp. 117–127, 1997.
[10]  T. Takeda, “Senescence-accelerated mouse (SAM): a biogerontological resource in aging research,” Neurobiology of Aging, vol. 20, no. 2, pp. 105–110, 1999.
[11]  R. S. Cotran, V. Kumar, and S. L. Robbins, “Diseases of aging,” in Robbins Pathologic Basis of Disease, pp. 543–551, W. B. Saunders Company, Philadelphia, Pa, USA, 1989.
[12]  M. A. Smith, R. K. Kutty, P. L. Richey et al., “Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer's disease,” American Journal of Pathology, vol. 145, no. 1, pp. 42–47, 1994.
[13]  M. A. Smith, M. Rudnicka-Nawrot, P. L. Richey et al., “Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer's disease,” Journal of Neurochemistry, vol. 64, no. 6, pp. 2660–2666, 1995.
[14]  M. A. Smith, P. L. Richey Harris, L. M. Sayre, J. S. Beckman, and G. Perry, “Widespread peroxynitrite-mediated damage in Alzheimer's disease,” Journal of Neuroscience, vol. 17, no. 8, pp. 2653–2657, 1997.
[15]  G. Perry, R. J. Castellani, K. Hirai, and M. A. Smith, “Reactive oxygen species mediate cellular damage in Alzheimer disease,” Journal of Alzheimer's Disease, vol. 1, no. 1, pp. 45–55, 1998.
[16]  A. Nunomura, G. Perry, G. Aliev et al., “Oxidative damage is the earliest event in Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 8, pp. 759–767, 2001.
[17]  D. A. Butterfield, T. Koppal, B. Howard et al., “Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-α-phenylnitrone and vitamin E,” Annals of the New York Academy of Sciences, vol. 854, pp. 448–462, 1998.
[18]  A. Mori, K. Utsumi, J. Liu, and M. Hosokawa, “Oxidative damage in the senescence-accelerated mouse,” Annals of the New York Academy of Sciences, vol. 854, pp. 239–250, 1998.
[19]  M. Pallas, A. Camins, M. A. Smith, G. Perry, H. G. Lee, and G. Casadesus, “From aging to Alzheimer's disease: unveiling “the switch” with the senescence-accelerated mouse model (SAMP8),” Journal of Alzheimer's Disease, vol. 15, no. 4, pp. 615–624, 2008.
[20]  R. Cristòfol, D. Porquet, R. Corpas, et al., “Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol,” Journal of Pineal Research, vol. 52, no. 3, pp. 271–281, 2012.
[21]  Y. Chiba, A. Shimada, N. Kumagai et al., “The senescence-accelerated mouse (SAM): a higher oxidative stress and age-dependent degenerative diseases model,” Neurochemical Research, vol. 34, no. 4, pp. 679–687, 2009.
[22]  O. Alvarez-García, I. Vega-Naredo, V. Sierra et al., “Elevated oxidative stress in the brain of senescence-accelerated mice at 5 months of age,” Biogerontology, vol. 7, no. 1, pp. 43–52, 2006.
[23]  H. Nabeshi, S. Oikawa, S. Inoue, K. Nishino, and S. Kawanishi, “Proteomic analysis for protein carbonyl as an indicator of oxidative damage in senescence-accelerated mice,” Free Radical Research, vol. 40, no. 11, pp. 1173–1181, 2006.
[24]  B. Bayram, S. Nikolai, P. Huebbe, et al., “Biomarkers of oxidative stress, antioxidant defence and inflammation are altered in the senescence-accelerated mouse prone 8,” Age. In press.
[25]  W. Gan, B. Nie, F. Shi, et al., “Age-dependent increases in the oxidative damage of DNA, RNA, and their metabolites in normal and senescence-accelerated mice analyzed by LC-MS/MS: urinary 8-oxoguanosine as a novel biomarker of aging,” Free Radical Biology Medicine, vol. 52, no. 9, pp. 1700–1707, 2012.
[26]  A. L. Petursdottir, S. A. Farr, J. E. Morley, W. A. Banks, and G. V. Skuladottir, “Lipid peroxidation in brain during aging in the senescence-accelerated mouse (SAM),” Neurobiology of Aging, vol. 28, no. 8, pp. 1170–1178, 2007.
[27]  F. Yasui, M. Ishibashi, S. Matsugo, S. Kojo, Y. Oomura, and K. Sasaki, “Brain lipid hydroperoxide level increases in senescence-accelerated mice at an early age,” Neuroscience Letters, vol. 350, no. 1, pp. 66–68, 2003.
[28]  D. A. Butterfield, B. J. Howard, S. Yatin, K. L. Allen, and J. M. Carney, “Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-α-phenylnitrone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 2, pp. 674–678, 1997.
[29]  C. Shi, S. Xiao, J. Liu et al., “Ginkgo biloba extract EGb761 protects against aging-associated mitochondrial dysfunction in platelets and hippocampi of SAMP8 mice,” Platelets, vol. 21, no. 5, pp. 373–379, 2010.
[30]  T. Kurokawa, S. Asada, S. Nishitani, and O. Hazeki, “Age-related changes in manganese superoxide dismutase activity in the cerebral cortex of senescence-accelerated prone and resistant mouse,” Neuroscience Letters, vol. 298, no. 2, pp. 135–138, 2001.
[31]  F. X. Sureda, J. Gutierrez-Cuesta, M. Romeu et al., “Changes in oxidative stress parameters and neurodegeneration markers in the brain of the senescence-accelerated mice SAMP-8,” Experimental Gerontology, vol. 41, no. 4, pp. 360–367, 2006.
[32]  A. K. Ali, W. A. Banks, V. B. Kumar et al., “Nitric oxide activity and isoenzyme expression in the senescence- accelerated mouse P8 model of Alzheimer's disease: effects of anti-amyloid antibody and antisense treatments,” Journals of Gerontology, vol. 64, no. 10, pp. 1025–1030, 2009.
[33]  D. Colas, A. Gharib, L. Bezin et al., “Regional age-related changes in neuronal nitric oxide synthase (nNOS), messenger RNA levels and activity in SAMP8 brain,” BMC Neuroscience, vol. 7, article 81, 2006.
[34]  D. Acu?a-Castroviejo, M. Carretero, C. Doerrier et al., “Melatonin protects lung mitochondria from aging,” Age, vol. 34, no. 3, pp. 681–692, 2012.
[35]  X. N. Song, L. Q. Zhang, D. G. Liu et al., “Oxidative damage to RNA and expression patterns of MTH1 in the hippocampi of senescence-accelerated SAMP8 mice and Alzheimer's disease patients,” Neurochemical Research, vol. 36, no. 8, pp. 1558–1565, 2011.
[36]  J. E. Morley, H. J. Armbrecht, S. A. Farr, et al., “The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer's disease,” Biochimica and Biophysica Acta, vol. 1822, no. 5, pp. 650–656, 2012.
[37]  S. A. Farr, T. O. Price, W. A. Banks, et al., “Effect of alpha-lipoic acid on memory, oxidation, and lifespan in SAMP8 mice,” Journal of Alzheimer's Disease, vol. 32, no. 2, pp. 447–455, 2012.
[38]  J. D. Zheng, A. L. Hei, P. P. Zuo et al., “Age-related alterations in the expression of MTH2 in the hippocampus of the SAMP8 mouse with learning and memory deterioration,” Journal of the Neurological Sciences, vol. 287, no. 1-2, pp. 188–196, 2009.
[39]  C. Xia, K. Higuchi, M. Shimizu et al., “Genetic typing of the Senescence-accelerated mouse (SAM) strains with microsatellite markers,” Mammalian Genome, vol. 10, no. 3, pp. 235–238, 1999.
[40]  D. A. Butterfield and H. F. Poon, “The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease,” Experimental Gerontology, vol. 40, no. 10, pp. 774–783, 2005.
[41]  X. R. Cheng, W. X. Zhou, Y. X. Zhang, D. S. Zhou, R. F. Yang, and L. F. Chen, “Differential gene expression profiles in the hippocampus of senescence-accelerated mouse,” Neurobiology of Aging, vol. 28, no. 4, pp. 497–506, 2007.
[42]  Y. Zheng, X. R. Cheng, W. X. Zhou, and Y. X. Zhang, “Gene expression patterns of hippocampus and cerebral cortex of senescence-accelerated mouse treated with Huang-Lian-Jie-Du decoction,” Neuroscience Letters, vol. 439, no. 2, pp. 119–124, 2008.
[43]  S. C. Chen, G. Lu, C. Y. Chan et al., “Microarray profile of brain aging-related genes in the frontal cortex of SAMP8,” Journal of Molecular Neuroscience, vol. 41, no. 1, pp. 12–16, 2010.
[44]  G. Casadesus, J. Gutierrez-Cuesta, and H. G. Lee, “Neuronal cell cycle re-entry markers are altered in the senescence accelerated mouse P8 (SAMP8),” Journal of Alzheimer's disease, vol. 30, no. 3, pp. 573–583, 2012.
[45]  L. Zhu, J. Yu, Q. Shi et al., “Strain-and age-related alteration of proteins in the brain of SAMP8 and SAMR1 mice,” Journal of Alzheimer's Disease, vol. 23, no. 4, pp. 641–654, 2011.
[46]  M. Hosokawa, R. Kasai, K. Higuchi, et al., “Grading score system: a method for evaluation of the degree of senescence in senescence accelerated mouse (SAM),” Mechanisms of Ageing and Development, vol. 26, no. 1, pp. 91–102, 1984.
[47]  T. Takeda, M. Hosokawa, K. Higuchi, M. Hosono, I. Akiguchi, and H. Katoh, “A novel murine model of aging, Senescence-accelerated mouse (SAM),” Archives of Gerontology and Geriatrics, vol. 19, no. 2, pp. 185–192, 1994.
[48]  J. C. López-Ramos, M. T. Jurado-Parras, C. Sanfeliu, D. Acu?a-Castroviejo, and J. M. Delgado-García, “Learning capabilities and CA1-prefrontal synaptic plasticity in a mice model of accelerated senescence,” Neurobiology of Aging, vol. 33, no. 3, pp. 627.e13–627.e26, 2011.
[49]  M. Miyamoto, “Characteristics of age-related behavioral changes in senescence-accelerated Mouse SAMP8 and SAMP10,” Experimental Gerontology, vol. 32, no. 1-2, pp. 139–148, 1997.
[50]  M. Miyamoto, Y. Kiyota, N. Yamazaki, et al., “Age-related changes in learning and memory in the senescence-accelerated mouse (SAM),” Physiology and Behavior, vol. 38, no. 3, pp. 399–406, 1986.
[51]  T. Kawamata, I. Akiguchi, H. Yagi et al., “Neuropathological studies on strains of senescence-accelerated mice (SAM) with age-related deficits in learning and memory,” Experimental Gerontology, vol. 32, no. 1-2, pp. 161–169, 1997.
[52]  X. H. Zhao and Y. Nomura, “Age-related changes in uptake and release on L-[3H]noradrenaline in brain slices of senescence accelerated mouse,” International Journal of Developmental Neuroscience, vol. 8, no. 3, pp. 267–272, 1990.
[53]  Y. Kitamura, X. H. Zhao, T. Ohnuki, M. Takei, and Y. Nomura, “Age-related changes in transmitter glutamate and NMDA receptor/channels in the brain of senescence-accelerated mouse,” Neuroscience Letters, vol. 137, no. 2, pp. 169–172, 1992.
[54]  D. J. Selkoe, “Amyloid β-protein and the genetics of Alzheimer's disease,” Journal of Biological Chemistry, vol. 271, no. 31, pp. 18295–18298, 1996.
[55]  A. M. Canudas, J. Gutierrez-Cuesta, M. I. Rodríguez et al., “Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM),” Mechanisms of Ageing and Development, vol. 126, no. 12, pp. 1300–1304, 2005.
[56]  X. Wei, Y. Zhang, and J. Zhou, “Alzheimer's disease-related gene expression in the brain of senescence accelerated mouse,” Neuroscience Letters, vol. 268, no. 3, pp. 139–142, 1999.
[57]  J. Gutierrez-Cuesta, F. X. Sureda, M. Romeu et al., “Chronic administration of melatonin reduces cerebral injury biomarkers in SAMP8,” Journal of Pineal Research, vol. 42, no. 4, pp. 394–402, 2007.
[58]  J. Gutierrez-Cuesta, M. Tajes, A. Jiménez, A. Coto-Montes, A. Camins, and M. Pallàs, “Evaluation of potential pro-survival pathways regulated by melatonin in a murine senescence model,” Journal of Pineal Research, vol. 45, no. 4, pp. 497–505, 2008.
[59]  M. Tajes, J. Gutierrez-Cuesta, J. Folch et al., “Lithium treatment decreases activities of tau kinases in a murine model of senescence,” Journal of Neuropathology and Experimental Neurology, vol. 67, no. 6, pp. 612–623, 2008.
[60]  M. Hamdane, P. Delobel, A. V. Sambo et al., “Neurofibrillary degeneration of the Alzheimer-type: an alternate pathway to neuronal apoptosis?” Biochemical Pharmacology, vol. 66, no. 8, pp. 1619–1625, 2003.
[61]  M. Takemura, S. Nakamura, I. Akiguchi et al., “β/A4 proteinlike immunoreactive granular structures in the brain of senescence-accelerated mouse,” American Journal of Pathology, vol. 142, no. 6, pp. 1887–1897, 1993.
[62]  A. Fukunari, A. Kato, Y. Sakai et al., “Colocalization of prolyl endopeptidase and amyloid β-peptide in brains of senescence-accelerated mouse,” Neuroscience Letters, vol. 176, no. 2, pp. 201–204, 1994.
[63]  Y. Nomura, Y. Yamanaka, Y. Kitamura et al., “Senescence-accelerated mouse: neurochemical studies on aging,” Annals of the New York Academy of Sciences, vol. 786, pp. 410–418, 1996.
[64]  V. B. Kumar, M. W. Franko, S. A. Farr, H. J. Armbrecht, and J. E. Morley, “Identification of age-dependent changes in expression of senescence-accelerated mouse (SAMP8) hippocampal proteins by expression array analysis,” Biochemical and Biophysical Research Communications, vol. 272, no. 3, pp. 657–661, 2000.
[65]  J. E. Morley, V. B. Kumar, A. E. Bernardo et al., “β-Amyloid precursor polypeptide in SAMP8 mice affects learning and memory,” Peptides, vol. 21, no. 12, pp. 1761–1767, 2000.
[66]  V. B. Kumar, K. Vyas, M. Franko et al., “Molecular cloning, expression, and regulation of hippocampal amyloid precursor protein of senescence accelerated mouse (SAMP8),” Biochemistry and Cell Biology, vol. 79, no. 1, pp. 57–67, 2001.
[67]  H. F. Poon, G. Joshi, R. Sultana et al., “Antisense directed at the Aβ region of APP decreases brain oxidative markers in aged senescence accelerated mice,” Brain Research, vol. 1018, no. 1, pp. 86–96, 2004.
[68]  H. F. Poon, A. Castegna, S. A. Farr et al., “Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain,” Neuroscience, vol. 126, no. 4, pp. 915–926, 2004.
[69]  J. Del Valle, J. Duran-Vilaregut, G. Manich et al., “Early amyloid accumulation in the hippocampus of SAMP8 mice,” Journal of Alzheimer's Disease, vol. 19, no. 4, pp. 1303–1315, 2010.
[70]  J. Del Valle, S. Bayod, A. Camins, et al., “Dendritic spine abnormalities in hippocampal CA1 pyramidal neurons underlying memory deficits in the SAMP8 mouse model of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 32, no. 1, pp. 233–240, 2012.
[71]  J. Del Valle, J. Duran-Vilaregut, G. Manich et al., “Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice,” Neurodegenerative Diseases, vol. 8, no. 6, pp. 421–429, 2011.
[72]  C. Pelegrí, A. M. Canudas, J. del Valle et al., “Increased permeability of blood-brain barrier on the hippocampus of a murine model of senescence,” Mechanisms of Ageing and Development, vol. 128, no. 9, pp. 522–528, 2007.
[73]  J. del Valle, J. Duran-Vilaregut, G. Manich et al., “Time-course of blood-brain barrier disruption in senescence-accelerated mouse prone 8 (SAMP8) mice,” International Journal of Developmental Neuroscience, vol. 27, no. 1, pp. 47–52, 2009.
[74]  G. Manich, C. Mercader, J. Del Valle et al., “Characterization of amyloid-β granules in the hippocampus of SAMP8 mice,” Journal of Alzheimer's Disease, vol. 25, no. 3, pp. 535–546, 2011.
[75]  B. Wu, M. Ueno, M. Onodera et al., “RAGE, LDL receptor, and LRP1 expression in the brains of SAMP8,” Neuroscience Letters, vol. 461, no. 2, pp. 100–105, 2009.
[76]  S. Oddo, A. Caccamo, L. Tran et al., “Temporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer disease: a link between Aβ and tau pathology,” Journal of Biological Chemistry, vol. 281, no. 3, pp. 1599–1604, 2006.
[77]  D. M. Walsh and D. J. Selkoe, “Aβ oligomers—a decade of discovery,” Journal of Neurochemistry, vol. 101, no. 5, pp. 1172–1184, 2007.
[78]  W. A. Banks, S. A. Farr, J. E. Morley, K. M. Wolf, V. Geylis, and M. Steinitz, “Anti-amyloid beta protein antibody passage across the blood-brain barrier in the SAMP8 mouse model of Alzheimer's disease: an age-related selective uptake with reversal of learning impairment,” Experimental Neurology, vol. 206, no. 2, pp. 248–256, 2007.
[79]  Q. Li, H. F. Zhao, Z. F. Zhang et al., “Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Aβ1-42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus,” Neuroscience, vol. 163, no. 3, pp. 741–749, 2009.
[80]  V. B. Kumar, M. Franko, W. A. Banks et al., “Increase in presenilin 1 (PS1) levels in senescence-accelerated mice (SAMP8) may indirectly impair memory by affecting amyloid precursor protein (APP) processing,” Journal of Experimental Biology, vol. 212, no. 4, pp. 494–498, 2009.
[81]  J. J. Palop and L. Mucke, “Amyloid-β-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks,” Nature Neuroscience, vol. 13, no. 7, pp. 812–818, 2010.
[82]  A. Y. Hsia, E. Masliah, L. McConlogue, et al., “Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, pp. 3228–3233, 1999.
[83]  Y. Yoshiyama, M. Higuchi, B. Zhang et al., “Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model,” Neuron, vol. 53, no. 3, pp. 337–351, 2007.
[84]  C. Perez-Cruz, M. W. Nolte, M. M. Van Gaalen et al., “Reduced spine density in specific regions of CA1 pyramidal neurons in two transgenic mouse models of Alzheimer's disease,” Journal of Neuroscience, vol. 31, no. 10, pp. 3926–3934, 2011.
[85]  W. A. Banks, S. M. Robinson, S. Verma, and J. E. Morley, “Efflux of human and mouse amyloid β proteins 1-40 and 1-42 from brain: impairment in a mouse model of alzheimer's disease,” Neuroscience, vol. 121, no. 2, pp. 487–492, 2003.
[86]  M. A. Erickson, M. L. Niehoff, S. A. Farr, et al., “Peripheral administration of antisense oligonucleotides targeting the amyloid-β protein precursor reverses AβPP and LRP-1 overexpression in the aged SAMP8 mouse brain,” Journal of Alzheimer's Disease, vol. 28, no. 4, pp. 951–960, 2012.
[87]  G. H. Chen, Y. J. Wang, X. M. Wang, and J. N. Zhou, “Accelerated senescence prone mouse-8 shows early onset of deficits in spatial learning and memory in the radial six-arm water maze,” Physiology and Behavior, vol. 82, no. 5, pp. 883–890, 2004.
[88]  X. Wei, Y. Zhang, and J. Zhou, “Alzheimer's disease-related gene expression in the brain of senescence accelerated mouse,” Neuroscience Letters, vol. 268, no. 3, pp. 139–142, 1999.
[89]  W. A. Banks, S. A. Farr, and J. E. Morley, “Permeability of the blood-brain barrier to albumin and insulin in the young and aged SAMP8 mouse,” Journals of Gerontology, vol. 55, no. 12, pp. B601–B606, 2000.
[90]  S. Michan and D. Sinclair, “Sirtuins in mammals: insights into their biological function,” Biochemical Journal, vol. 404, no. 1, pp. 1–13, 2007.
[91]  M. D. Knutson and C. Leeuwenburgh, “Resveratrol and novel potent activators of SIRT1: effects on aging and age-related diseases,” Nutrition Reviews, vol. 66, no. 10, pp. 591–596, 2008.
[92]  V. Quivy and C. Van Lint, “Regulation at multiple levels of NF-κB-mediated transactivation by protein acetylation,” Biochemical Pharmacology, vol. 68, no. 6, pp. 1221–1229, 2004.
[93]  W. Qin, T. Yang, L. Ho et al., “Neuronal SIRT1 activation as a novel mechanism underlying the prevention of alzheimer disease amyloid neuropathology by calorie restriction,” Journal of Biological Chemistry, vol. 281, no. 31, pp. 21745–21754, 2006.
[94]  G. Donmez, D. Wang, D. E. Cohen, and L. Guarente, “SIRT1 suppresses β-amyloid production by activating the α-secretase gene ADAM10,” Cell, vol. 142, no. 2, pp. 320–332, 2010.
[95]  D. J. Bonda, H. G. Lee, A. Camins et al., “The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations,” The Lancet Neurology, vol. 10, no. 3, pp. 275–279, 2011.
[96]  S. S. Karuppagounder, J. T. Pinto, H. Xu, H. L. Chen, M. F. Beal, and G. E. Gibson, “Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease,” Neurochemistry International, vol. 54, no. 2, pp. 111–118, 2009.
[97]  M. Pallàs, J. G. Pizarro, J. Gutierrez-Cuesta et al., “Modulation of SIRT1 expression in different neurodegenerative models and human pathologies,” Neuroscience, vol. 154, no. 4, pp. 1388–1397, 2008.
[98]  M. J. Sharps, “Spatial memory in young and elderly adults: category structure of stimulus sets,” Psychology and Aging, vol. 6, no. 2, pp. 309–312, 1991.
[99]  R. J. Weber, L. T. Brown, and J. K. Weldon, “Cognitive maps of environmental knowledge and preference in nursing home patients,” Experimental Aging Research, vol. 4, no. 3, pp. 157–174, 1978.
[100]  J. E. Morley, S. A. Farr, and J. F. Flood, “Antibody to amyloid beta protein alleviates impaired acquisition, retention, and memory processing in SAMP8 mice,” Neurobiology of Learning and Memory, vol. 78, no. 1, pp. 125–138, 2002.
[101]  J. F. Flood and J. E. Morley, “Early onset of age-related impairment of aversive and appetitive learning in the SAM-P/8 mouse,” Journals of Gerontology, vol. 47, no. 2, pp. B52–B59, 1992.
[102]  J. F. Flood, S. A. Farr, K. Uezu, and J. E. Morley, “The pharmacology of post-trial memory processing in septum,” European Journal of Pharmacology, vol. 350, no. 1, pp. 31–38, 1998.
[103]  S. Ikegami, S. Shumiya, and H. Kawamura, “Age-related changes in radial-arm maze learning and basal forebrain cholinergic systems in senescence accelerated mice (SAM),” Behavioural Brain Research, vol. 51, no. 1, pp. 15–22, 1992.
[104]  H. Cheng, J. Yu, Z. Jiang et al., “Acupuncture improves cognitive deficits and regulates the brain cell proliferation of SAMP8 mice,” Neuroscience Letters, vol. 432, no. 2, pp. 111–116, 2008.
[105]  J. F. Flood and J. E. Morley, “Age-related changes in footshock avoidance acquisition and retention in senescence accelerated mouse (SAM),” Neurobiology of Aging, vol. 14, no. 2, pp. 153–157, 1993.
[106]  M. Miyamoto, “Characteristics of age-related behavioral changes in senescence-accelerated Mouse SAMP8 and SAMP10,” Experimental Gerontology, vol. 32, no. 1-2, pp. 139–148, 1997.
[107]  M. Miyamoto, Y. Kiyota, M. Nishiyama, and A. Nagaoka, “Senescence-accelerated mouse (SAM): age-related reduced anxiety-like behavior in the SAM-P/8 strain,” Physiology and Behavior, vol. 51, no. 5, pp. 979–985, 1992.
[108]  H. Kasai, M. Matsuzaki, J. Noguchi, N. Yasumatsu, and H. Nakahara, “Structure-stability-function relationships of dendritic spines,” Trends in Neurosciences, vol. 26, no. 7, pp. 360–368, 2003.
[109]  H. Kasai, M. Fukuda, S. Watanabe, A. Hayashi-Takagi, and J. Noguchi, “Structural dynamics of dendritic spines in memory and cognition,” Trends in Neurosciences, vol. 33, no. 3, pp. 121–129, 2010.
[110]  J. Bourne and K. M. Harris, “Do thin spines learn to be mushroom spines that remember?” Current Opinion in Neurobiology, vol. 17, no. 3, pp. 381–386, 2007.
[111]  F. Madeo, N. Tavernarakis, and G. Kroemer, “Can autophagy promote longevity?” Nature Cell Biology, vol. 12, no. 9, pp. 842–846, 2010.
[112]  B. Caballero and A. Coto-Montes, “An insight into the role of autophagy in cell responses in the aging and neurodegenerative brain,” Histology and Histopathology, vol. 27, no. 3, pp. 263–275, 2012.
[113]  B. A. McCray and J. P. Taylor, “The role of autophagy in age-related neurodegeneration,” NeuroSignals, vol. 16, no. 1, pp. 75–84, 2007.
[114]  T. Shintani and D. J. Klionsky, “Autophagy in health and disease: a double-edged sword,” Science, vol. 306, no. 5698, pp. 990–995, 2004.
[115]  A. Cichanover, “Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting,” Cell Death and Differentiation, vol. 12, no. 9, pp. 1178–1190, 2005.
[116]  B. Levine and D. J. Klionsky, “Development by self-digestion: molecular mechanisms and biological functions of autophagy,” Developmental Cell, vol. 6, no. 4, pp. 463–477, 2004.
[117]  B. Caballero, I. Vega-Naredo, V. Sierra et al., “Autophagy upregulation and loss of NF-κB in oxidative stress-related immunodeficient SAMP8 mice,” Mechanisms of Ageing and Development, vol. 130, no. 11-12, pp. 722–730, 2009.
[118]  Q. Ma, J. Qiang, P. Gu, Y. Wang, Y. Geng, and M. Wang, “Age-related autophagy alterations in the brain of senescence accelerated mouse prone 8 (SAMP8) mice,” Experimental Gerontology, vol. 46, no. 7, pp. 533–541, 2011.
[119]  J. Menardo, Y. Tang, and S. Ladrech, “Oxidative stress, inflammation, and autophagic stress as the key mechanisms of premature age-related hearing loss in SAMP8 mouse cochlea,” Antioxidant and Redox Signaling, vol. 16, no. 3, pp. 263–274, 2012.
[120]  T. Nishikawa, J. A. Takahashi, Y. Fujibayashi et al., “An early stage mechanism of the age-associated mitochondrial dysfunction in the brain of SAMP8 mice; an age-associated neurodegeneration animal model,” Neuroscience Letters, vol. 254, no. 2, pp. 69–72, 1998.
[121]  P. H. Reddy and M. F. Beal, “Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease,” Trends in Molecular Medicine, vol. 14, no. 2, pp. 45–53, 2008.
[122]  I. G. Onyango, J. Lu, M. Rodova, E. Lezi, A. B. Crafter, and R. H. Swerdlow, “Regulation of neuron mitochondrial biogenesis and relevance to brain health,” Biochimica et Biophysica Acta, vol. 1802, no. 1, pp. 228–234, 2010.
[123]  M. I. Rodríguez, G. Escames, L. C. López et al., “Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice,” Experimental Gerontology, vol. 43, no. 8, pp. 749–756, 2008.
[124]  M. Carretero, G. Escames, L. C. López et al., “Long-term melatonin administration protects brain mitochondria from aging,” Journal of Pineal Research, vol. 47, no. 2, pp. 192–200, 2009.
[125]  J. Xu, C. Shi, Q. Li, J. Wu, E. L. Forster, and D. T. Yew, “Mitochondrial dysfunction in platelets and hippocampi of senescence-accelerated mice,” Journal of Bioenergetics and Biomembranes, vol. 39, no. 2, pp. 195–202, 2007.
[126]  F. Tian, T. J. Tong, Z. Y. Zhang, M. A. McNutt, and X. W. Liu, “Age-dependent down-regulation of mitochondrial 8-oxoguanine dna glycosylase in sam-p/8 mouse brain and its effect on brain aging,” Rejuvenation Research, vol. 12, no. 3, pp. 209–215, 2009.
[127]  T. Nishikawa, J. A. Takahashi, Y. Fujibayashi et al., “An early stage mechanism of the age-associated mitochondrial dysfunction in the brain of SAMP8 mice; an age-associated neurodegeneration animal model,” Neuroscience Letters, vol. 254, no. 2, pp. 69–72, 1998.
[128]  R. Rodríguez-Calvo, M. Jové, T. Coll et al., “PGC-1β down-regulation is associated with reduced ERRα activity and MCAD expression in skeletal muscle of senescence-accelerated mice,” Journals of Gerontology, vol. 61, no. 8, pp. 773–780, 2006.
[129]  A. Salminen, K. Kaarniranta, A. Haapasalo, H. Soininen, and M. Hiltunen, “AMP-activated protein kinase: a potential player in Alzheimer's disease,” Journal of Neurochemistry, vol. 118, no. 4, pp. 460–474, 2011.
[130]  V. Vingtdeux, P. Davies, D. W. Dickson, and P. Marambaud, “AMPK is abnormally activated in tangle-and pre-tangle-bearing neurons in Alzheimer's disease and other tauopathies,” Acta Neuropathologica, vol. 121, no. 3, pp. 337–349, 2011.
[131]  J. S. Won, Y. B. Im, J. Kim, A. K. Singh, and I. Singh, “Involvement of AMP-activated-protein-kinase (AMPK) in neuronal amyloidogenesis,” Biochemical and Biophysical Research Communications, vol. 399, no. 4, pp. 487–491, 2010.
[132]  J. J. Pei, C. Bj?rkdahl, H. Zhang, X. Zhou, and B. Winblad, “p70 S6 kinase and tau in Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 14, no. 4, pp. 385–392, 2008.
[133]  J. J. Pei and J. Hugon, “mTOR-dependent signalling in Alzheimer's disease,” Journal of Cellular and Molecular Medicine, vol. 12, no. 6B, pp. 2525–2532, 2008.
[134]  B. Dasgupta and J. Milbrandt, “Resveratrol stimulates AMP kinase activity in neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 17, pp. 7217–7222, 2007.
[135]  N. L. Price, A. P. Gomes, A. J. Y. Ling, et al., “SIRT1 is required for AMPK activation and the beneficial effects of RSV on mitochondrial function,” Cell Metabolism, vol. 15, no. 5, pp. 675–690, 2012.
[136]  S. J. Park, F. Ahmad, A. Philp, et al., “RSV ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases,” Cell, vol. 148, no. 3, pp. 421–433, 2012.
[137]  E. Morselli, L. Galluzzi, O. Kepp et al., “Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol,” Aging, vol. 1, no. 12, pp. 961–970, 2009.
[138]  E. Morselli, M. C. Maiuri, M. Markaki et al., “Caloric restriction and resveratrol promote longevity through the sirtuin-1-dependent induction of autophagy,” Cell Death and Disease, vol. 1, no. 1, article e10, 2010.
[139]  H. Chen and D. C. Chan, “Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases,” Human molecular genetics, vol. 18, no. 2, pp. R169–R176, 2009.
[140]  M. J. Barsoum, H. Yuan, A. A. Gerencser et al., “Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons,” EMBO Journal, vol. 25, no. 16, pp. 3900–3911, 2006.
[141]  S. Chang, T. R. Ma, R. D. Miranda, M. E. Balestra, R. W. Mahley, and Y. Huang, “Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 51, pp. 18694–18699, 2005.
[142]  R. K. Dagda, S. J. Cherra, S. M. Kulich, A. Tandon, D. Park, and C. T. Chu, “Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13843–13855, 2009.
[143]  X. Wang, B. Su, L. Zheng, G. Perry, M. A. Smith, and X. Zhu, “The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease,” Journal of Neurochemistry, vol. 109, supplement 1, pp. 153–159, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133