全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Peroxisome Dynamics: Molecular Players, Mechanisms, and (Dys)functions

DOI: 10.5402/2012/714192

Full-Text   Cite this paper   Add to My Lib

Abstract:

Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk. 1. Introduction Peroxisomes are single membrane-bounded cell organelles that can be found in all nucleated cells. These organelles, originally described as “microbodies,” were first visualized in cytological studies of mouse proximal kidney tubules [1] and rat hepatocytes [2]. In 1966, de Duve and Baudhuin carried out the first detailed biochemical investigations on freshly isolated “microbodies” from rat liver and kidney and introduced the term “peroxisome” to refer to the organelle’s central role in the production and degradation of hydrogen peroxide (H2O2) [3]. Over the years, our knowledge and understanding of how this organelle functions within the cell has gradually increased. For example, it has turned out that a major function of peroxisomes in all organisms is to regulate cellular lipid metabolism. In addition, it has become clear that the enzymatic content of these organelles (and hence their functions) can vary substantially across species. This is best illustrated by the fact that certain organisms contain specialized peroxisomes that are named differently. For example, germinating seeds of plants contain “glyoxysomes”, a subclass of microbodies that contain enzymes of the glyoxylate cycle [4]; members of the protist order Kinetoplastida contain “glycosomes”, a category of specialized peroxisomes that compartmentalize

References

[1]  J. Rhodin, Correlation of ultrastructural organization and function in norm and experimentally changed proximal convoluted tubule cells of the mouse kidney [Ph.D. thesis], Aktiebolaget, Godvil, Stockholm, Sweden, 1954.
[2]  W. Bernhard and C. Rouiller, “Microbodies and the problem of mitochondrial regeneration in liver cells,” The Journal of Biophysical and Biochemical Cytology, vol. 2, no. 4, pp. 355–360, 1956.
[3]  C. de Duve and P. Baudhuin, “Peroxisomes (microbodies and related particles),” Physiological Reviews, vol. 46, no. 2, pp. 323–357, 1966.
[4]  R. W. Breidenbach and H. Beevers, “Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm,” Biochemical and Biophysical Research Communications, vol. 27, no. 4, pp. 462–469, 1967.
[5]  F. R. Opperdoes and P. Borst, “Localization of non glycolytic enzymes in a microbody like organelle in Trypanosoma brucei: the glycosome,” FEBS Letters, vol. 80, no. 2, pp. 360–364, 1977.
[6]  G. Jedd and N. H. Chua, “A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane,” Nature Cell Biology, vol. 2, no. 4, pp. 226–231, 2000.
[7]  M. Bartoszewska, J. A. K. W. Kiel, R. A. L. Bovenberg, M. Veenhuis, and I. J. van der Klei, “Autophagy deficiency promotes β-lactam production in Penicillium chrysogenum,” Applied and Environmental Microbiology, vol. 77, no. 4, pp. 1413–1422, 2011.
[8]  I. J. van der Klei, H. Yurimoto, Y. Sakai, and M. Veenhuis, “The significance of peroxisomes in methanol metabolism in methylotrophic yeast,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1453–1462, 2006.
[9]  K. Schneider, L. Kienow, E. Schmelzer et al., “A new type of peroxisomal Acyl-coenzyme a synthetase from Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid,” Journal of Biological Chemistry, vol. 280, no. 14, pp. 13962–13972, 2005.
[10]  A. A. G. Wiszniewski, W. Zhou, S. M. Smith, and J. D. Bussell, “Identification of two Arabidopsis genes encoding a peroxisomal oxidoreductase-like protein and an acyl-CoA synthetase-like protein that are required for responses to pro-auxins,” Plant Molecular Biology, vol. 69, no. 5, pp. 503–515, 2009.
[11]  N. E. Braverman and A. B. Moser, “Functions of plasmalogen lipids in health and disease,” Biochimica et Biophysica Acta, vol. 1822, no. 9, pp. 1442–1452, 2012.
[12]  E. Dixit, S. Boulant, Y. Zhang et al., “Peroxisomes are signaling platforms for antiviral innate immunity,” Cell, vol. 141, no. 4, pp. 668–681, 2010.
[13]  P. B. Lazarow, “Viruses exploiting peroxisomes,” Current Opinion in Microbiology, vol. 14, no. 4, pp. 458–469, 2011.
[14]  M. Fransen, M. Nordgren, B. Wang, and O. Apanasets, “Role of peroxisomes in ROS/RNS-metabolism: implications for human disease,” Biochimica et Biophysica Acta, vol. 1822, no. 9, pp. 1363–1373, 2012.
[15]  P. A. M. Michels, F. Bringaud, M. Herman, and V. Hannaert, “Metabolic functions of glycosomes in trypanosomatids,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1463–1477, 2006.
[16]  R. J. A. Wanders and H. R. Waterham, “Biochemistry of mammalian peroxisomes revisited,” Annual Review of Biochemistry, vol. 75, pp. 295–332, 2006.
[17]  J. M. Palms, F. J. Corpas, and L. A. Del Río, “Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology,” Proteomics, vol. 9, no. 9, pp. 2301–2312, 2009.
[18]  P. P. Van Veldhoven, “Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism,” Journal of Lipid Research, vol. 51, no. 10, pp. 2863–2895, 2010.
[19]  M. Islinger, M. J. R. Cardoso, and M. Schrader, “Be different-The diversity of peroxisomes in the animal kingdom,” Biochimica et Biophysica Acta, vol. 1803, no. 8, pp. 881–897, 2010.
[20]  T. Gabaldón, “Peroxisome diversity and evolution,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1541, pp. 765–773, 2010.
[21]  J. E. Faust, A. Verma, C. Peng, and J. A. McNew, “An inventory of peroxisomal proteins and pathways in Drosophila melanogaster,” Traffic, vol. 13, no. 10, pp. 1378–1392, 2012.
[22]  R. J. A. Wanders and H. R. Waterham, “Peroxisomal disorders: the single peroxisomal enzyme deficiencies,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1707–1720, 2006.
[23]  H. R. Waterham and M. S. Ebberink, “Genetics and molecular basis of human peroxisome biogenesis disorders,” Biochimica et Biophysica Acta, no. 9, pp. 1430–1441, 18222012.
[24]  H. W. Moser, “Genotype-phenotype correlations in disorders of peroxisome biogenesis,” Molecular Genetics and Metabolism, vol. 68, no. 2, pp. 316–327, 1999.
[25]  N. Shimozawa, “Molecular and clinical findings and diagnostic flowchart of peroxisomal diseases,” Brain and Development, vol. 33, no. 9, pp. 770–776, 2011.
[26]  M. Engelen, S. Kemp, M. de Visser et al., “X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management,” Orphanet Journal of Rare Diseases, vol. 7, no. 1, p. 51, 2012.
[27]  M. Baes and P. Aubourg, “Peroxisomes, myelination, and axonal integrity in the CNS,” Neuroscientist, vol. 15, no. 4, pp. 367–379, 2009.
[28]  M. Islinger, S. Grille, H. D. Fahimi, and M. Schrader, “The peroxisome: an update on mysteries,” Histochemistry and Cell Biology, vol. 137, no. 5, Article ID 224150, pp. 547–574, 2012.
[29]  S. Thoms, S. Gr?nborg, and J. G?rtner, “Organelle interplay in peroxisomal disorders,” Trends in Molecular Medicine, vol. 15, no. 7, pp. 293–302, 2009.
[30]  F. Cam?es, N. A. Bonekamp, H. K. Delille, and M. Schrader, “Organelle dynamics and dysfunction: a closer link between peroxisomes and mitochondria,” Journal of Inherited Metabolic Disease, vol. 32, no. 2, pp. 163–180, 2009.
[31]  W. A. Dunn, J. M. Cregg, J. A. Kiel et al., “Pexophagy: the selective autophagy of peroxisomes,” Autophagy, vol. 1, no. 2, pp. 75–83, 2005.
[32]  S. Yokota, “Formation of autophagosomes during degradation of excess peroxisomes induced by administration of dioctyl phthalate,” European Journal of Cell Biology, vol. 61, no. 1, pp. 67–80, 1993.
[33]  S. R. Terlecky and M. Fransen, “How peroxisomes arise,” Traffic, vol. 1, no. 6, pp. 465–473, 2000.
[34]  B. Distel, R. Erdmann, S. J. Gould et al., “A unified nomenclature for peroxisome biogenesis factors,” Journal of Cell Biology, vol. 135, no. 1, pp. 1–3, 1996.
[35]  J. M. Nuttall, A. Motley, and E. H. Hettema, “Peroxisome biogenesis: recent advances,” Current Opinion in Cell Biology, vol. 23, no. 4, pp. 421–426, 2011.
[36]  M. Schrader, N. A. Bonekamp, and M. Islinger, “Fission and proliferation of peroxisomes,” Biochimica et Biophysica Acta, vol. 1822, no. 9, pp. 1343–1357, 2012.
[37]  P. B. Lazarow and Y. Fujiki, “Biogenesis of peroxisomes,” Annual Review of Cell Biology, vol. 1, pp. 489–530, 1985.
[38]  Y. Fujiki, R. A. Rachubinski, and P. B. Lazarow, “Synthesis of a major integral membrane polypeptide of rat liver peroxisomes on free polysomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 22, pp. 7127–7131, 1984.
[39]  T. Imanaka, Y. Shiina, T. Takano, T. Hashimoto, and T. Osumi, “Insertion of the 70-kDa peroxisomal membrane protein into peroxisomal membranes in vivo and in vitro,” Journal of Biological Chemistry, vol. 271, no. 7, pp. 3706–3713, 1996.
[40]  I. A. Sparkes, C. Hawes, and A. Baker, “AtPEX2 and AtPEX10 are targeted to peroxisomes independently of known endoplasmic reticulum trafficking routes,” Plant Physiology, vol. 139, no. 2, pp. 690–700, 2005.
[41]  P. K. Kim, R. T. Mullen, U. Schumann, and J. Lippincott-Schwartz, “The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER,” Journal of Cell Biology, vol. 173, no. 4, pp. 521–532, 2006.
[42]  M. P. Pinto, C. P. Grou, I. S. Alencastre et al., “The import competence of a peroxisomal membrane protein is determined by Pex19p before the docking step,” Journal of Biological Chemistry, vol. 281, no. 45, pp. 34492–34502, 2006.
[43]  A. van der Zand, I. Braakman, and H. F. Tabak, “Peroxisomal membrane proteins insert into the endoplasmic reticulum,” Molecular Biology of the Cell, vol. 21, no. 12, pp. 2057–2065, 2010.
[44]  C. Brocard and A. Hartig, “Peroxisome targeting signal 1: is it really a simple tripeptide?” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1565–1573, 2006.
[45]  B. W. Swinkels, S. J. Gould, and S. Subramani, “Targeting efficiencies of various permutations of the consensus C-terminal tripeptide peroxisomal targeting signal,” FEBS Letters, vol. 305, no. 2, pp. 133–136, 1992.
[46]  G. Lametschwandtner, C. Brocard, M. Fransen, P. Van Veldhoven, J. Berger, and A. Hartig, “The difference in recognition of terminal tripeptides as peroxisomal targeting signal I between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it,” Journal of Biological Chemistry, vol. 273, no. 50, pp. 33635–33643, 1998.
[47]  G. Neuberger, S. Maurer-Stroh, B. Eisenhaber, A. Hartig, and F. Eisenhaber, “Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences,” Journal of Molecular Biology, vol. 328, no. 3, pp. 567–579, 2003.
[48]  G. Chowdhary, A. R. Kataya, T. Lingner, and S. Reumann, “Non-canonical peroxisome targeting signals: identification of novel PTS1 tripeptides and characterization of enhancer elements by computational permutation analysis,” BMC Plant Biology, vol. 12, no. 1, p. 142, 2012.
[49]  G. Neuberger, S. Maurer-Stroh, B. Eisenhaber, A. Hartig, and F. Eisenhaber, “Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence,” Journal of Molecular Biology, vol. 328, no. 3, pp. 581–592, 2003.
[50]  S. Reumann, D. Buchwald, and T. Lingner, “PredPlantPTS1: a web server for the prediction of plant peroxisomal proteins,” Frontiers in Plant Science, vol. 3, article 194, 2012.
[51]  P. B. Lazarow, “Chapter 3.1.7. The import receptor Pex7p and the PTS2 targeting sequence,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1599–1604, 2006.
[52]  O. I. Petriv, L. Tang, V. I. Titorenko, and R. A. Rachubinski, “A new definition for the consensus sequence of the peroxisome targeting signal type 2,” Journal of Molecular Biology, vol. 341, no. 1, pp. 119–134, 2004.
[53]  M. Kunze, G. Neuberger, S. Maurer-Stroh et al., “Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7,” Journal of Biological Chemistry, vol. 286, no. 52, pp. 45048–45062, 2011.
[54]  A. M. Motley, E. H. Hettema, R. Ketting, R. Plasterk, and H. F. Tabak, “Caenorhabditis elegans has a single pathway to target matrix proteins to peroxisomes,” EMBO Reports, vol. 1, no. 1, pp. 40–46, 2000.
[55]  N. H. Gonzalez, G. Felsner, F. D. Schramm, A. Klingl, and K. Bolte, “A single peroxisomal targeting signal mediates matrix protein import in diatoms,” PLoS ONE, vol. 6, no. 9, Article ID e25316, 2011.
[56]  F. Kragler, A. Langeder, J. Raupachova, M. Binder, and A. Hartig, “Two independent peroxisomal targeting signals in catalase A of Saccharomyces cerevisiae,” Journal of Cell Biology, vol. 120, no. 3, pp. 665–673, 1993.
[57]  G. C. Peterson, J. M. Sommer, S. Klosterman, C. C. Wang, and M. Parsons, “Trpanosoma brucei: identification of an internal region of phosphoglycerate kinase required for targeting to glycosomal microbodies,” Experimental Parasitology, vol. 85, no. 1, pp. 16–23, 1997.
[58]  A. T. J. Klein, M. V. Van Den Berg, G. Bottger, H. F. Tabak, and B. Distel, “Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25011–25019, 2002.
[59]  K. Gunkel, R. Van Dijk, M. Veenhuis, and I. J. van der Klei, “Routing olf hansenula polymorpha alcohol oxidase: an alternative peroxisomal protein-sorting machinery,” Molecular Biology of the Cell, vol. 15, no. 3, pp. 1347–1355, 2004.
[60]  N. Galland, S. de Walque, F. G. J. Voncken, C. L. M. J. Verlinde, and P. A. M. Michels, “An internal sequence targets Trypanosoma brucei triosephosphate isomerase to glycosomes,” Molecular and Biochemical Parasitology, vol. 171, no. 1, pp. 45–49, 2010.
[61]  G. B. Cohen, V. S. Rangan, B. K. Chen, S. Smith, and D. Baltimore, “The human thioesterase II protein binds to a site on HIV-1 Nef critical for CD4 down-regulation,” Journal of Biological Chemistry, vol. 275, no. 30, pp. 23097–23105, 2000.
[62]  X. Yang, P. Edward Purdue, and P. B. Lazarow, “Eci1p uses a PTS1 to enter peroxisomes: either its own or that of a partner, Dci1p,” European Journal of Cell Biology, vol. 80, no. 2, pp. 126–138, 2001.
[63]  M. Islinger, K. W. Li, J. Seitz, A. V?lkl, and G. H. Lüers, “Hitchhiking of Cu/Zn superoxide dismutase to peroxisomes: evidence for a natural piggyback import mechanism in mammals,” Traffic, vol. 10, no. 11, pp. 1711–1721, 2009.
[64]  P. A. Walton, P. E. Hill, and S. Subramani, “Import of stably folded proteins into peroxisomes,” Molecular Biology of the Cell, vol. 6, no. 6, pp. 675–683, 1995.
[65]  J. A. McNew and J. M. Goodman, “An oligomeric protein is imported into peroxisomes in vivo,” Journal of Cell Biology, vol. 127, no. 5, pp. 1245–1257, 1994.
[66]  V. I. Titorenko, J. M. Nicaud, H. Wang, H. Chan, and R. A. Rachubinski, “Acyl-CoA oxidase is imported as a heteropentameric, cofactor-containing complex into peroxisomes of Yarrowia lipolytica,” Journal of Cell Biology, vol. 156, no. 3, pp. 481–494, 2002.
[67]  M. O. Freitas, T. Francisco, T. A. Rodrigues, et al., “PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N-terminal domain of PEX14,” Journal of Biological Chemistry, vol. 286, no. 47, pp. 40509–40519, 2011.
[68]  H. Otera and Y. Fujiki, “Pex5p imports folded tetrameric catalase by interaction with Pex13p,” Traffic, vol. 13, no. 10, pp. 1364–1377, 2012.
[69]  W. B. Snyder, A. Koller, A. J. Choy, and S. Subramani, “The peroxin Pex19p interacts with multiple, integral membrane proteins at the peroxisomal membrane,” Journal of Cell Biology, vol. 149, no. 6, pp. 1171–1177, 2000.
[70]  E. Van Ael and M. Fransen, “Targeting signals in peroxisomal membrane proteins,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1629–1638, 2006.
[71]  M. Fransen, T. Wylin, C. Brees, G. P. Mannaerts, and P. P. Van Veldhoven, “Human Pex19p binds peroxisomal integral membrane proteins at regions distinct from their sorting sequences,” Molecular and Cellular Biology, vol. 21, no. 13, pp. 4413–4424, 2001.
[72]  H. Rottensteiner, A. Kramer, S. Lorenzen et al., “Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals,” Molecular Biology of the Cell, vol. 15, no. 7, pp. 3406–3417, 2004.
[73]  J. M. Jones, J. C. Morrell, and S. J. Gould, “Multiple distinct targeting signals in integral peroxisomal membrane proteins,” Journal of Cell Biology, vol. 153, no. 6, pp. 1141–1149, 2001.
[74]  R. T. Mullen, C. S. Lisenbee, J. A. Miernyk, and R. N. Trelease, “Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum,” Plant Cell, vol. 11, no. 11, pp. 2167–2185, 1999.
[75]  Y. Elgersma, L. Kwast, M. Van Den Berg et al., “Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S. cerevisiae, causes proliferation of the endoplasmic reticulum membrane,” The EMBO Journal, vol. 16, no. 24, pp. 7326–7341, 1997.
[76]  J. M. Jones, J. C. Morrell, and S. J. Gould, “PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins,” Journal of Cell Biology, vol. 164, no. 1, pp. 57–67, 2004.
[77]  T. Matsuzaki and Y. Fujiki, “The peroxisomal membrane protein import receptor Pex3p is directly transported to peroxisomes by a novel Pex19p- and Pex16p-dependent pathway,” Journal of Cell Biology, vol. 183, no. 7, pp. 1275–1286, 2008.
[78]  I. J. van der Klei and M. Veenhuis, “PTS1-independent sorting of peroxisomal matrix proteins by Pex5p,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1794–1800, 2006.
[79]  F. D. Mast, A. Fagarasanu, and R. Rachubinski, “The peroxisomal protein importomer: a bunch of transients with expanding waistlines,” Nature Cell Biology, vol. 12, no. 3, pp. 203–205, 2010.
[80]  G. J. Gatto, B. V. Geisbrecht, S. J. Gould, and J. M. Berg, “Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5,” Nature Structural Biology, vol. 7, no. 12, pp. 1091–1095, 2000.
[81]  W. A. Stanley, F. V. Filipp, P. Kursula et al., “Recognition of a functional peroxisome Type 1 target by the dynamic import receptor Pex5p,” Molecular Cell, vol. 24, no. 5, pp. 653–663, 2006.
[82]  W. Schliebs, J. Saidowsky, B. Agianian, G. Dodt, F. W. Herberg, and W. H. Kunau, “Recombinant human peroxisomal targeting signal receptor PEX5. Structural basis for interaction of PEX5 with PEX14,” Journal of Biological Chemistry, vol. 274, no. 9, pp. 5666–5673, 1999.
[83]  J. Saidowsky, G. Dodt, K. Kirchberg et al., “The di-aromatic pentapeptide repeats of the human peroxisome import receptor PEX5 are separate high affinity binding sites for the peroxisomal membrane protein PEX14,” Journal of Biological Chemistry, vol. 276, no. 37, pp. 34524–34529, 2001.
[84]  H. Otera, K. Setoguchi, M. Hamasaki, T. Kumashiro, N. Shimizu, and Y. Fujiki, “Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: conserved Pex5p WXXXF/Y motifs are critical for matrix protein import,” Molecular and Cellular Biology, vol. 22, no. 6, pp. 1639–1655, 2002.
[85]  K. Nito, M. Hayashi, and M. Nishimura, “Direct interaction and determination of binding domains among peroxisomal import factors in Arabidopsis thaliana,” Plant and Cell Physiology, vol. 43, no. 4, pp. 355–366, 2002.
[86]  J. Costa-Rodrigues, A. F. Carvalho, M. Fransen et al., “Pex5p, the peroxisomal cycling receptor, is a monomeric non-globular protein,” Journal of Biological Chemistry, vol. 280, no. 26, pp. 24404–24411, 2005.
[87]  W. A. Stanley and M. Wilmanns, “Dynamic architecture of the peroxisomal import receptor Pex5p,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1592–1598, 2006.
[88]  J. A. Parkes, S. Langer, A. Hartig, and A. Bakert, “PTS1-independent targeting of isocitrate iyase to peroxisomes requires the PTS1 receptor Pex5p,” Molecular Membrane Biology, vol. 20, no. 1, pp. 61–69, 2003.
[89]  K. P. Madrid, G. De Crescenzo, S. Wang, and A. Jardim, “Modulation of the Leishmania donovani peroxin 5 quaternary structure by peroxisomal targeting signal 1 ligands,” Molecular and Cellular Biology, vol. 24, no. 17, pp. 7331–7344, 2004.
[90]  K. B. Moscicka, S. H. Klompmaker, D. Wang, I. J. van der Klei, and E. J. Boekema, “The Hansenula polymorpha peroxisomal targeting signal 1 receptor, Pex5p, functions as a tetramer,” FEBS Letters, vol. 581, no. 9, pp. 1758–1762, 2007.
[91]  N. Braverman, G. Dodt, S. J. Gould, and D. Valle, “An isoform of Pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes,” Human Molecular Genetics, vol. 7, no. 8, pp. 1195–1205, 1998.
[92]  R. L. Jung, H. J. Ho, H. P. Jin et al., “Cloning of two splice variants of the rice PTS1 receptor, OsPex5pL and OsPex5pS, and their functional characterization using pex5-deficient yeast and Arabidopsis,” Plant Journal, vol. 47, no. 3, pp. 457–466, 2006.
[93]  Y. Elgersma, M. Elgersma-Hooisma, T. Wenzel, J. M. McCaffery, M. G. Farquhar, and S. Subramani, “A mobile PTS2 receptor for peroxisomal protein import in Pichia pastoris,” Journal of Cell Biology, vol. 140, no. 4, pp. 807–820, 1998.
[94]  K. Ghys, M. Fransen, G. P. Mannaerts, and P. P. Van Veldhoven, “Functional studies on human Pex7p: subcellular localization and interaction with proteins containing a peroxisome-targeting signal type 2 and other peroxins,” Biochemical Journal, vol. 365, no. 1, pp. 41–50, 2002.
[95]  D. M. Nair, P. E. Purdue, and P. B. Lazarow, “Pex7p translocates in and out of peroxisomes in Saccharomyces cerevisiae,” Journal of Cell Biology, vol. 167, no. 4, pp. 599–604, 2004.
[96]  W. A. Stanley, K. Fodor, M. A. Marti-Renom, W. Schliebs, and M. Wilmanns, “Protein translocation into peroxisomes by ring-shaped import receptors,” FEBS Letters, vol. 581, no. 25, pp. 4795–4802, 2007.
[97]  P. E. Purdue and P. B. Lazarow, “Pex18p is constitutively degraded during peroxisome biogenesis,” Journal of Biological Chemistry, vol. 276, no. 50, pp. 47684–47689, 2001.
[98]  S. Mukai, K. Ghaedi, and Y. Fujiki, “Intracellular localization, function, and dysfunction of the peroxisome-targeting signal type 2 receptor, Pex7p, in mammalian cells,” Journal of Biological Chemistry, vol. 277, no. 11, pp. 9548–9561, 2002.
[99]  Y. Fujiki, Y. Matsuzono, T. Matsuzaki, and M. Fransen, “Import of peroxisomal membrane proteins: the interplay of Pex3p- and Pex19p-mediated interactions,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1639–1646, 2006.
[100]  K. A. Sacksteder, J. M. Jones, S. T. South, X. Li, Y. Liu, and S. J. Gould, “PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis,” Journal of Cell Biology, vol. 148, no. 5, pp. 931–944, 2000.
[101]  Y. Matsuzono and Y. Fujiki, “In vitro transport of membrane proteins to peroxisomes by shuttling receptor Pex19p,” Journal of Biological Chemistry, vol. 281, no. 1, pp. 36–42, 2006.
[102]  A. Halbach, S. Lorenzen, C. Landgraf, R. Volkmer-Engert, R. Erdmann, and H. Rottensteiner, “Function of the PEX19-binding site of human adrenoleukodystrophy protein as targeting motif in man and yeast: PMP targeting is evolutionarily conserved,” Journal of Biological Chemistry, vol. 280, no. 22, pp. 21176–21182, 2005.
[103]  T. Saveria, A. Halbach, R. Erdmann et al., “Conservation of PEX19-binding motifs required for protein targeting to mammalian peroxisomal and trypanosome glycosomal membranes,” Eukaryotic Cell, vol. 6, no. 8, pp. 1439–1449, 2007.
[104]  E. H. Hettema, W. Girzalsky, M. van Den Berg, R. Erdmann, and B. Distel, “Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins,” The EMBO Journal, vol. 19, no. 2, pp. 223–233, 2000.
[105]  Y. Matsuzono, T. Matsuzaki, and Y. Fujiki, “Functional domain mapping of peroxin Pex19p: interaction with Pex3p is essentail for function and translocation,” Journal of Cell Science, vol. 119, no. 17, pp. 3539–3550, 2006.
[106]  M. Fransen, I. Vastiau, C. Brees, V. Brys, G. P. Mannaerts, and P. P. Van Veldhoven, “Potential role for Pex19p in assembly of PTS-receptor docking complexes,” Journal of Biological Chemistry, vol. 279, no. 13, pp. 12615–12624, 2004.
[107]  D. Hoepfner, D. Schildknegt, I. Braakman, P. Philippsen, and H. F. Tabak, “Contribution of the endoplasmic reticulum to peroxisome formation,” Cell, vol. 122, no. 1, pp. 85–95, 2005.
[108]  G. Agrawal, S. Joshi, and S. Subramani, “Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 22, pp. 9113–9118, 2011.
[109]  S. K. Lam, N. Yoda, and R. Schekman, “PNAS plus: a vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 14, pp. E51–52, 2011.
[110]  S. K. Banerjee, P. S. Kessler, T. Saveria, and M. Parsons, “Identification of trypanosomatid PEX19: functional characterization reveals impact on cell growth and glycosome size and number,” Molecular and Biochemical Parasitology, vol. 142, no. 1, pp. 47–55, 2005.
[111]  K. G?tte, W. Girzalsky, M. Linkert et al., “Pex19p, a farnesylated protein essential for peroxisome biogenesis,” Molecular and Cellular Biology, vol. 18, no. 1, pp. 616–628, 1998.
[112]  R. Ruckt?schel, S. Thoms, V. Sidorovitch et al., “Farnesylation of Pex19p is required for its structural integrity and function in peroxisome biogenesis,” Journal of Biological Chemistry, vol. 284, no. 31, pp. 20885–20896, 2009.
[113]  W. B. Snyder, K. N. Faber, T. J. Wenzel et al., “Pex19p interacts with Pex3p and Pex10p and is essential for peroxisome biogenesis in Pichia pastoris,” Molecular Biology of the Cell, vol. 10, no. 6, pp. 1745–1761, 1999.
[114]  I. M. K. Vastiau, E. A. Anthonio, M. Brams et al., “Farnesylation of Pex19p is not essential for peroxisome biogenesis in yeast and mammalian cells,” Cellular and Molecular Life Sciences, vol. 63, no. 14, pp. 1686–1699, 2006.
[115]  M. Otzen, R. Ruckt?schel, S. Thoms et al., “Pex19p contributes to peroxisome inheritance in the association of peroxisomes to Myo2p,” Traffic, vol. 13, no. 7, pp. 947–959, 2012.
[116]  W. Schliebs and W. H. Kunau, “PTS2 Co-receptors: diverse proteins with common features,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1605–1612, 2006.
[117]  N. Galland, F. Demeure, V. Hannaert et al., “Characterization of the role of the receptors PEX5 and PEX7 in the import of proteins into glycosomes of Trypanosoma brucei,” Biochimica et Biophysica Acta, vol. 1773, no. 4, pp. 521–535, 2007.
[118]  P. E. Purdue, X. Yang, and P. B. Lazarow, “Pex18p and Pex21p, a novel pair of related peroxins essential for peroxisomal targeting by the PTS2 pathway,” Journal of Cell Biology, vol. 143, no. 7, pp. 1859–1869, 1998.
[119]  J. A. K. W. Kiel, M. Veenhuis, and I. J. van der Klei, “PEX genes in fungal genomes: common, rare or redundant,” Traffic, vol. 7, no. 10, pp. 1291–1303, 2006.
[120]  V. I. Titorenko, J. J. Smith, R. K. Szilard, and R. A. Rachubinski, “Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome,” Journal of Cell Biology, vol. 142, no. 2, pp. 403–420, 1998.
[121]  M. Sichting, A. Schell-Steven, H. Prokisch, R. Erdmann, and H. Rottensteiner, “Pex7p and Pex20p of Neurospora crassa function together in PTS2-dependent protein import into peroxisomes,” Molecular Biology of the Cell, vol. 14, no. 2, pp. 810–821, 2003.
[122]  M. Otzen, D. Wang, M. G. J. Lunenborg, and I. J. van der Klei, “Hansenula polymorpha Pex20p is an oligomer that binds the peroxisomal targeting signal 2 (PTS2),” Journal of Cell Science, vol. 118, no. 15, pp. 3409–3418, 2005.
[123]  S. Léon, L. Zhang, W. H. McDonald, J. Yates, J. M. Cregg, and S. Subramani, “Dynamics of the peroxisomal import cycle of PpPex20p: ubiquitin-dependent localization and regulation,” Journal of Cell Biology, vol. 172, no. 1, pp. 67–78, 2006.
[124]  H. Otera, T. Harano, M. Honsho et al., “The mammalian peroxin Pex5pl, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p·PTS2 protein complex into peroxisomes via its initial docking site, Pex14p,” Journal of Biological Chemistry, vol. 275, no. 28, pp. 21703–21714, 2000.
[125]  G. Dodt, D. Warren, E. Becker, P. Rehling, and S. J. Gould, “Domain mapping of human PEX5 reveals functional and structural similarities to Saccharomyces cerevisiae Pex18p and Pex21p,” Journal of Biological Chemistry, vol. 276, no. 45, pp. 41769–41781, 2001.
[126]  H. Einw?chter, S. Sowinski, W. H. Kunau, and W. Schliebs, “Yarrowia lipolytica Pex20p, Saccharomyces cerevisiae Pex18p/Pex21p and mammalian Pex5pL fulfil a common function in the early steps of the peroxisomal PTS2 import pathway,” EMBO Reports, vol. 2, no. 11, pp. 1035–1039, 2001.
[127]  L. Zhang, S. Léon, and S. Subramani, “Two independent pathways traffic the intraperoxisomal peroxin PpPex8p into peroxisomes: mechanism and evolutionary implications,” Molecular Biology of the Cell, vol. 17, no. 2, pp. 690–699, 2006.
[128]  A. Hensel, S. Beck, F. El Magraoui, H. W. Platta, W. Girzalsky, and R. Erdmann, “Cysteine-dependent ubiquitination of Pex18p is linked to cargo translocation across the peroxisomal membrane,” Journal of Biological Chemistry, vol. 286, no. 50, pp. 43495–43505, 2011.
[129]  C. Williams and B. Distel, “Pex13p: docking or cargo handling protein?” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1585–1591, 2006.
[130]  J. E. Azevedo and W. Schliebs, “Pex14p, more than just a docking protein,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1574–1584, 2006.
[131]  M. Albertini, P. Rehling, R. Erdmann et al., “Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways,” Cell, vol. 89, no. 1, pp. 83–92, 1997.
[132]  K. Niederhoff, N. M. Meindl-Beinker, D. Kerssen et al., “Yeast Pex14p possesses two functionally distinct Pex5p and one Pex7p binding sites,” Journal of Biological Chemistry, vol. 280, no. 42, pp. 35571–35578, 2005.
[133]  A. J. Urquhart, D. Kennedy, S. J. Gould, and D. I. Crane, “Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p,” Journal of Biological Chemistry, vol. 275, no. 6, pp. 4127–4136, 2000.
[134]  J. J. Smith, R. K. Szilard, M. Marelli, and R. A. Rachubinski, “The peroxin Pex17p of the yeast Yarrowia lipolytica is associated peripherally with the peroxisomal membrane and is required for the import of a subset of matrix proteins,” Molecular and Cellular Biology, vol. 17, no. 5, pp. 2511–2520, 1997.
[135]  B. Huhse, P. Rehling, M. Albertini, L. Blank, K. Meller, and W. H. Kunau, “Pex17p of Saccharomyces cerevisiae is a novel peroxin and component of the peroxisomal protein translocation machinery,” Journal of Cell Biology, vol. 140, no. 1, pp. 49–60, 1998.
[136]  ?. Opaliński, J. A. K. W. Kiel, T. G. Homan, M. Veenhuis, and I. J. van der Klei, “Penicillium chrysogenum Pex14/17p—a novel component of the peroxisomal membrane that is important for penicillin production,” FEBS Journal, vol. 277, no. 15, pp. 3203–3218, 2010.
[137]  D. Managadze, C. Würtz, S. Wiese et al., “Identification of PEX33, a novel component of the peroxisomal docking complex in the filamentous fungus Neurospora crassa,” European Journal of Cell Biology, vol. 89, no. 12, pp. 955–964, 2010.
[138]  Y. Fang, J. C. Morrell, J. M. Jones, and S. J. Gould, “PEX3 functions as a PEX19 docking factor in the import of class I peroxisomal membrane proteins,” Journal of Cell Biology, vol. 164, no. 6, pp. 863–875, 2004.
[139]  M. Fransen, I. Vastiau, C. Brees, V. Brys, G. P. Mannaerts, and P. P. Van Veldhoven, “Analysis of human Pex19p's domain structure by pentapeptide scanning mutagenesis,” Journal of Molecular Biology, vol. 346, no. 5, pp. 1275–1286, 2005.
[140]  C. Ma, U. Schumann, N. Rayapuram, and S. Subramani, “The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p,” Molecular Biology of the Cell, vol. 20, no. 16, pp. 3680–3689, 2009.
[141]  M. Meinecke, C. Cizmowski, W. Schliebs et al., “The peroxisomal importomer constitutes a large and highly dynamic pore,” Nature Cell Biology, vol. 12, no. 3, pp. 273–277, 2010.
[142]  F. Schmidt, D. Dietrich, R. Eylenstein, Y. Groemping, T. Stehle, and G. Dodt, “The role of conserved PEX3 regions in PEX19-binding and peroxisome biogenesis,” Traffic, vol. 13, no. 9, pp. 1244–1260, 2012.
[143]  S. Thoms, I. Harms, K. U. Kalies, and J. G?rtner, “Peroxisome formation requires the endoplasmic reticulum channel protein Sec61,” Traffic, vol. 13, no. 4, pp. 599–609, 2012.
[144]  T. Junne, L. Kocik, and M. Spiess, “The hydrophobic core of the Sec61 translocon defines the hydrophobicity threshold for membrane integration,” Molecular Biology of the Cell, vol. 21, no. 10, pp. 1662–1670, 2010.
[145]  J. W. Chartron, W. M. Clemons, and C. J. Suloway, “The complex process of GETting tail-anchored membrane proteins to the ER,” Current Opinion in Structural Biology, vol. 22, no. 2, pp. 217–224, 2012.
[146]  S. T. South, E. Baumgart, and S. J. Gould, “Inactivation of the endoplasmic reticulum protein translocation factor, Sec61p, or its homolog, Ssh1p, does not affect peroxisome biogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 21, pp. 12027–12031, 2001.
[147]  N. Schueller, S. J. Holton, K. Fodor et al., “The peroxisomal receptor Pex19p forms a helical mPTS recognition domain,” The EMBO Journal, vol. 29, no. 15, pp. 2491–2500, 2010.
[148]  D. Wang, N. V. Visser, M. Veenhuis, and I. J. van der Klei, “Physical interactions of the peroxisomal targeting signal 1 receptor Pex5p, studied by fluorescence correlation spectroscopy,” Journal of Biological Chemistry, vol. 278, no. 44, pp. 43340–43345, 2003.
[149]  K. Nicolay, M. Veenhuis, A. C. Douma, and W. Harder, “A 31P NMR study of the internal pH of yeast peroxisomes,” Archives of Microbiology, vol. 147, no. 1, pp. 37–41, 1987.
[150]  W. F. Visser, C. W. T. van Roermund, L. Ijlst, H. R. Waterham, and R. J. A. Wanders, “Metabolite transport across the peroxisomal membrane,” Biochemical Journal, vol. 401, no. 2, pp. 365–375, 2007.
[151]  M. Fransen, C. Brees, K. Ghys et al., “Analysis of mammalian peroxin interactions using a non-transcription-based bacterial two-hybrid assay.,” Molecular & Cellular Proteomics, vol. 1, no. 3, pp. 243–252, 2002.
[152]  W. A. Stanley, N. V. Pursiainen, E. F. Garman, A. H. Juffer, M. Wilmanns, and P. Kursula, “A previously unobserved conformation for the human Pex5p receptor suggests roles for intrinsic flexibility and rigid domain motions in ligand binding,” BMC Structural Biology, vol. 7, article 24, 2007.
[153]  I. S. Alencastre, T. A. Rodrigues, C. P. Grou, M. Fransen, C. Sá-Miranda, and J. E. Azevedo, “Mapping the cargo protein membrane translocation step into the PEX5 cycling pathway,” Journal of Biological Chemistry, vol. 284, no. 40, pp. 27243–27251, 2009.
[154]  H. W. Platta, W. Girzalsky, and R. Erdmann, “Ubiquitination of the peroxisomal import receptor Pex5p,” Biochemical Journal, vol. 384, no. 1, pp. 37–45, 2004.
[155]  J. A. K. W. Kiel, K. Emmrich, H. E. Meyer, and W. H. Kunau, “Ubiquitination of the peroxisomal targeting signal type 1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import,” Journal of Biological Chemistry, vol. 280, no. 3, pp. 1921–1930, 2005.
[156]  A. Kragt, T. Voorn-Brouwer, M. van den Berg, and B. Distel, “The Saccharomyces cerevisiae peroxisomal import receptor Pex5p is monoubiquitinated in wild type cells,” Journal of Biological Chemistry, vol. 280, no. 9, pp. 7867–7874, 2005.
[157]  C. P. Grou, A. F. Carvalho, M. P. Pinto et al., “The peroxisomal protein import machinery—a case report of transient ubiquitination with a new flavor,” Cellular and Molecular Life Sciences, vol. 66, no. 2, pp. 254–262, 2009.
[158]  A. F. Carvalho, M. P. Pinto, C. P. Grou et al., “Ubiquitination of mammalian Pex5p, the peroxisomal import receptor,” Journal of Biological Chemistry, vol. 282, no. 43, pp. 31267–31272, 2007.
[159]  K. Okumoto, S. Misono, N. Miyata, Y. Matsumoto, S. Mukai, and Y. Fujiki, “Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling,” Traffic, vol. 12, no. 8, pp. 1067–1083, 2011.
[160]  C. Williams, M. Van Den Berg, R. R. Sprenger, and B. Distel, “A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p,” Journal of Biological Chemistry, vol. 282, no. 31, pp. 22534–22543, 2007.
[161]  S. Léon and S. Subramani, “A conserved cysteine residue of Pichia pastoris Pex20p is essential for its recycling from the peroxisome to the cytosol,” Journal of Biological Chemistry, vol. 282, no. 10, pp. 7424–7430, 2007.
[162]  H. W. Platta, F. El Magraoui, D. Schlee, S. Grunau, W. Girzalsky, and R. Erdmann, “Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling,” Journal of Cell Biology, vol. 177, no. 2, pp. 197–204, 2007.
[163]  A. Varshavsky, “The ubiquitin system, an immense realm,” Annual Reviews of Biochemistry, vol. 81, pp. 167–176, 2012.
[164]  D. Komander, “The emerging complexity of protein ubiquitination,” Biochemical Society Transactions, vol. 37, no. 5, pp. 937–953, 2009.
[165]  M. B. Metzger, V. A. Hristova, and A. M. Weissman, “HECT and RING finger families of E3 ubiquitin ligases at a glance,” Journal of Cell Science, vol. 125, no. 3, pp. 531–537, 2012.
[166]  C. Williams, M. van den Berg, E. Geers, and B. Distel, “Pex10p functions as an E3 ligase for the Ubc4p-dependent ubiquitination of Pex5p,” Biochemical and Biophysical Research Communications, vol. 374, no. 4, pp. 620–624, 2008.
[167]  H. W. Platta, F. El Magraoui, B. E. B?umer, D. Schlee, W. Girzalsky, and R. Erdmann, “Pex2 and Pex12 function as protein-ubiquitin ligases in peroxisomal protein import,” Molecular and Cellular Biology, vol. 29, no. 20, pp. 5505–5516, 2009.
[168]  F. El Magraoui, B. E. B?umer, H. W. Platta, J. S. Baumann, W. Girzalsky, and R. Erdmann, “The RING-type ubiquitin ligases Pex2p, Pex10p and Pex12p form a heteromeric complex that displays enhanced activity in an ubiquitin conjugating enzyme-selective manner,” FEBS Journal, vol. 279, no. 11, pp. 2060–2070, 2012.
[169]  J. H. Eckert and N. Johnsson, “Pex10p links the ubiquitin conjugating enzyme Pex4p to the protein import machinery of the peroxisome,” Journal of Cell Science, vol. 116, no. 17, pp. 3623–3634, 2003.
[170]  F. F. Wiebel and W. H. Kunau, “The pas2 protein essential for peroxisome biogenesis is related to ubiquitin-conjugated enzymes,” Nature, vol. 359, no. 6390, pp. 73–76, 1992.
[171]  A. Koller, W. B. Snyder, K. N. Faber et al., “Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin-conjugating enzyme, Pex4p, on the peroxisomal membrane,” Journal of Cell Biology, vol. 146, no. 1, pp. 99–112, 1999.
[172]  C. Williams, M. van den Berg, S. Panjikar, W. A. Stanley, B. Distel, and M. Wilmanns, “Insights into ubiquitin-conjugating enzyme/co-activator interactions from the structure of the Pex4p:Pex22p complex,” The EMBO Journal, vol. 31, no. 2, pp. 391–402, 2011.
[173]  C. P. Grou, A. F. Carvalho, M. P. Pinto et al., “Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor,” Journal of Biological Chemistry, vol. 283, no. 21, pp. 14190–14197, 2008.
[174]  C. C. Chang, D. S. Warren, K. A. Sacksteder, and S. J. Gould, “PEX12 interacts with PEX5 and PEX10 and acts downstream of receptor docking in peroxisomal matrix protein import,” Journal of Cell Biology, vol. 147, no. 4, pp. 761–773, 1999.
[175]  J. Prestele, G. Hierl, C. Scherling et al., “Different functions of the C3HC4 zinc RING finger peroxins PEX10, PEX2, and PEX12 in peroxisome formation and matrix protein import,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 33, pp. 14915–14920, 2010.
[176]  H. W. Platta, M. O. Debelyy, F. El Magraoui, and R. Erdmann, “The AAA peroxins Pex1p and Pex6p function as dislocases for the ubiquitinated peroxisomal import receptor Pex5p,” Biochemical Society Transactions, vol. 36, no. 1, pp. 99–104, 2008.
[177]  Y. Fujiki, C. Nashiro, N. Miyata, S. Tamura, and K. Okumoto, “New insights into dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p in shuttling of PTS1-receptor Pex5p during peroxisome biogenesis,” Biochimica et Biophysica Acta, no. 1, pp. 145–149, 2012.
[178]  H. W. Platta, S. Grunau, K. Rosenkranz, W. Girzalsky, and R. Erdmann, “Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol,” Nature Cell Biology, vol. 7, no. 8, pp. 817–822, 2005.
[179]  Y. Fujiki, N. Miyata, N. Matsumoto, and S. Tamura, “Dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p involved in shuttling of the PTS1 receptor PexSp in peroxisome biogenesis,” Biochemical Society Transactions, vol. 36, no. 1, pp. 109–113, 2008.
[180]  K. N. Faber, J. A. Heyman, and S. Subramani, “Two AAA family peroxins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes,” Molecular and Cellular Biology, vol. 18, no. 2, pp. 936–943, 1998.
[181]  I. Birschmann, A. K. Stroobants, M. van den Berg et al., “Pex15p of Saccharomyces cerevisiae provides a molecular basis for recruitment of the AAA peroxin Pex6p to peroxisomal membranes,” Molecular Biology of the Cell, vol. 14, no. 6, pp. 2226–2236, 2003.
[182]  N. Matsumoto, S. Tamura, and Y. Fujiki, “The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes,” Nature Cell Biology, vol. 5, no. 5, pp. 454–460, 2003.
[183]  N. Miyata, K. Okumoto, S. Mukai, M. Noguchi, and Y. Fujiki, “AWP1/ZFAND6 functions in Pex5 export by interacting with cys-monoubiquitinated Pex5 and Pex6AAA ATPase 1980,” Traffic, vol. 13, no. 1, pp. 168–183, 2012.
[184]  M. O. Debelyy, H. W. Platta, D. Saffian et al., “Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery,” Journal of Biological Chemistry, vol. 286, no. 32, pp. 28223–28234, 2011.
[185]  C. P. Grou, T. Francisco, T. A. Rodrigues, et al., “Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on ubiquitin-peroxin 5 (PEX5) thioester conjugate,” Journal of Biological Chemistry, vol. 287, no. 16, pp. 12815–12827, 2012.
[186]  C. P. Grou, A. F. Carvalho, M. P. Pinto et al., “Properties of the ubiquitin-Pex5p thiol ester conjugate,” Journal of Biological Chemistry, vol. 284, no. 16, pp. 10504–10513, 2009.
[187]  M. Schrader, B. E. Reuber, J. C. Morrell et al., “Expression of PEX11β mediates peroxisome proliferation in the absence of extracellular stimuli,” Journal of Biological Chemistry, vol. 273, no. 45, pp. 29607–29614, 1998.
[188]  S. Thoms and R. Erdmann, “Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation,” FEBS Journal, vol. 272, no. 20, pp. 5169–5181, 2005.
[189]  M. S. Ebberink, J. Koster, G. Visser et al., “A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11a gene 1968,” Journal of Medical Genetics, vol. 49, no. 5, pp. 307–313, 2012.
[190]  P. Lorenz, A. G. Maier, E. Baumgart, R. Erdmann, and C. Clayton, “Elongation and clustering of glycosomes in Trypanosoma brucei overexpressing the glycosomal Pex11p,” The EMBO Journal, vol. 17, no. 13, pp. 3542–3555, 1998.
[191]  M. J. Lingard and R. N. Trelease, “Five Arabidopsis peroxin 11 homologs individually promote peroxisome elongation, duplication or aggregation,” Journal of Cell Science, vol. 119, no. 9, pp. 1961–1972, 2006.
[192]  J. Koch, K. Pranjic, A. Huber et al., “PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance,” Journal of Cell Science, vol. 123, no. 19, pp. 3389–3400, 2010.
[193]  A. Huber, J. Koch, F. Kragler, C. Brocard, and A. Hartig, “A subtle interplay between three Pex11 proteins shapes de novo formation and fission of peroxisomes,” Traffic, vol. 13, no. 1, pp. 157–167, 2012.
[194]  M. N. Cepińska, M. Veenhuis, I. J. van der Klei, and S. Nagotu, “Peroxisome fission is associated with reorganization of specific membrane proteins,” Traffic, vol. 12, no. 7, pp. 925–937, 2011.
[195]  ?. Opaliński, M. Veenhuis, and I. J. Van Der Klei, “Peroxisomes: membrane events accompanying peroxisome proliferation,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 6, pp. 847–851, 2011.
[196]  F. J. Vizeacoumar, J. C. Torres-Guzman, Y. Y. C. Tam, J. D. Aitchison, and R. A. Rachubinski, “YHR150w and YDR479c encode peroxisomal integral membrane proteins involved in the regulation of peroxisome number, size, and distribution in Saccharomyces cerevisiae,” Journal of Cell Biology, vol. 161, no. 2, pp. 321–332, 2003.
[197]  F. J. Vizeacoumar, J. C. Torres-Guzman, D. Bouard, J. D. Aitchison, and R. A. Rachubinski, “Pex30p, Pex31p, and Pex32p form a family of peroxisomal integral membrane proteins regulating peroxisome size and number in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 15, no. 2, pp. 665–677, 2004.
[198]  M. Yan, D. A. Rachubinski, S. Joshi, R. A. Rachubinski, and S. Subramani, “Dysferlin domain-containing proteins, Pex30p and Pex31p, localized to two compartments, control the number and size of oleate-induced peroxisomes in Pichia pastoris,” Molecular Biology of the Cell, vol. 19, no. 3, pp. 885–898, 2008.
[199]  R. J. Tower, A. Fagarasanu, J. D. Aitchison, and R. A. Rachubinski, “The peroxin Pex34p functions with the Pex11 family of peroxisomal divisional proteins to regulate the peroxisome population in yeast,” Molecular Biology of the Cell, vol. 22, no. 10, pp. 1727–1738, 2011.
[200]  A. Koch, G. Schneider, G. H. Lüers, and M. Schrader, “Peroxisome elongation and constriction but not fission can occur independently of dynamin-like protein 1,” Journal of Cell Science, vol. 117, no. 17, pp. 3995–4006, 2004.
[201]  A. Koch, Y. Yoon, N. A. Bonekamp, M. A. McNiven, and M. Schrader, “A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells,” Molecular Biology of the Cell, vol. 16, no. 11, pp. 5077–5086, 2005.
[202]  S. Carrasco and I. Mérida, “Diacylglycerol, when simplicity becomes complex,” Trends in Biochemical Sciences, vol. 32, no. 1, pp. 27–36, 2007.
[203]  T. Guo, Y. Y. Kit, J. M. Nicaud et al., “Peroxisome division in the yeast Yarrowia lipolytica is regulated by a signal from inside the peroxisome,” Journal of Cell Biology, vol. 162, no. 7, pp. 1255–1266, 2003.
[204]  T. Guo, C. Gregg, T. Boukh-Viner et al., “A signal from inside the peroxisome initiates its division by promoting the remodeling of the peroxisomal membrane,” Journal of Cell Biology, vol. 177, no. 2, pp. 289–303, 2007.
[205]  M. Schrader and Y. Yoon, “Mitochondria and peroxisomes: are the “Big Brother” and the “Little Sister” closer than assumed?” BioEssays, vol. 29, no. 11, pp. 1105–1114, 2007.
[206]  X. Li and S. J. Gould, “The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11,” Journal of Biological Chemistry, vol. 278, no. 19, pp. 17012–17020, 2003.
[207]  A. Koch, M. Thiemann, M. Grabenbauer, Y. Yoon, M. A. McNiven, and M. Schrader, “Dynamin-like protein 1 is involved in peroxisomal fission,” Journal of Biological Chemistry, vol. 278, no. 10, pp. 8597–8605, 2003.
[208]  S. Mano, C. Nakamori, M. Kondo, M. Hayashi, and M. Nishimura, “An Arabidopsis dynamin-related protein, DRP3A, controls both peroxisomal and mitochondrial division,” Plant Journal, vol. 38, no. 3, pp. 487–498, 2004.
[209]  K. Kuravi, S. Nagotu, A. M. Krikken et al., “Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae,” Journal of Cell Science, vol. 119, no. 19, pp. 3994–4001, 2006.
[210]  S. Nagotu, R. Saraya, M. Otzen, M. Veenhuis, and I. J. van der Klei, “Peroxisome proliferation in Hansenula polymorpha requires Dnm1p which mediates fission but not de novo formation,” Biochimica et Biophysica Acta, vol. 1783, no. 5, pp. 760–769, 2008.
[211]  S. M. Ferguson and P. De Camilli, “Dynamin, a membrane-remodelling GTPase,” Nature Reviews Molecular Cell Biology, vol. 13, no. 2, pp. 75–88, 2012.
[212]  Y. Yoon, E. W. Krueger, B. J. Oswald, and M. A. McNiven, “The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1,” Molecular and Cellular Biology, vol. 23, no. 15, pp. 5409–5420, 2003.
[213]  A. M. Motley, G. P. Ward, and E. H. Hettema, “Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p,” Journal of Cell Science, vol. 121, no. 10, pp. 1633–1640, 2008.
[214]  S. Gandre-Babbe and A. M. van der Bliek, “The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells,” Molecular Biology of the Cell, vol. 19, no. 6, pp. 2402–2412, 2008.
[215]  S. Kobayashi, A. Tanaka, and Y. Fujiki, “Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis,” Experimental Cell Research, vol. 313, no. 8, pp. 1675–1686, 2007.
[216]  M. J. Lingard, S. K. Gidd, S. Bingham, S. J. Rothstein, R. T. Mullen, and R. N. Trelease, “Arabidopsis peroxin11c-e, fission1b, and dynamin-related protein3A cooperate in cell cycle-associated replication of peroxisomes,” Plant Cell, vol. 20, no. 6, pp. 1567–1585, 2008.
[217]  J. Koch and C. Brocard, “PEX11 proteins attract Mff and hFis1 to coordinate peroxisomal fission,” Journal of Cell Science, vol. 125, part 6, pp. 3813–3826, 2012.
[218]  S. Joshi, G. Agrawal, and S. Subramani, “Phosphorylation-dependent Pex11p and Fis1p interaction regulates peroxisome division,” Molecular Biology of the Cell, vol. 23, no. 7, pp. 1307–1315, 2012.
[219]  W. H. Meijer, I. J. Van Der Klei, M. Veenhuis, and J. A. K. W. Kiel, “ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes,” Autophagy, vol. 3, no. 2, pp. 106–116, 2007.
[220]  S. Yokota and H. Dariush Fahimi, “Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms,” Histochemistry and Cell Biology, vol. 131, no. 4, pp. 455–458, 2009.
[221]  A. Till, R. Lakhani, S. F. Burnett, and S. Subramani, “Pexophagy: the selective degradation of peroxisomes,” International Journal of Cell Biology, vol. 2012, Article ID 512721, 18 pages, 2012.
[222]  Y. Sakai, M. Oku, I. J. van der Klei, and J. A. K. W. Kiel, “Pexophagy: autophagic degradation of peroxisomes,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1767–1775, 2006.
[223]  H. Mukaiyama, M. Baba, M. Osumi et al., “Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure,” Molecular Biology of the Cell, vol. 15, no. 1, pp. 58–70, 2004.
[224]  S. Yokota, “Degradation of normal and proliferated peroxisomes in rat hepatocytes: regulation of peroxisomes quantity in cells,” Microscopy Research and Technique, vol. 61, no. 2, pp. 151–160, 2003.
[225]  S. Yokota, “Formation of autophagosomes during degradation of excess peroxisomes induced by administration of dioctyl phthalate,” European Journal of Cell Biology, vol. 61, no. 1, pp. 67–80, 1993.
[226]  J. I. Iwata, J. Ezaki, M. Komatsu et al., “Excess peroxisomes are degraded by autophagic machinery in mammals,” Journal of Biological Chemistry, vol. 281, no. 7, pp. 4035–4041, 2006.
[227]  S. Hara-Kuge and Y. Fujiki, “The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes,” Experimental Cell Research, vol. 314, no. 19, pp. 3531–3541, 2008.
[228]  S. J. Huybrechts, P. P. Van Veldhoven, C. Brees, G. P. Mannaerts, G. V. Los, and M. Fransen, “Peroxisome dynamics in cultured mammalian cells,” Traffic, vol. 10, no. 11, pp. 1722–1733, 2009.
[229]  Y. Ano, T. Hattori, N. Kato, and Y. Sakai, “Intracellular ATP correlates with mode of pexophagy in Pichia pastoris,” Bioscience, Biotechnology and Biochemistry, vol. 69, no. 8, pp. 1527–1533, 2005.
[230]  A. M. Motley, J. M. Nuttall, and E. H. Hettema, “Atg36: the Saccharomyces cerevisiae receptor for pexophagy,” Autophagy, vol. 8, no. 11, pp. 1680–1681, 2012.
[231]  D. J. Klionsky, J. M. Cregg, W. A. Dunn et al., “A unified nomenclature for yeast autophagy-related genes,” Developmental Cell, vol. 5, no. 4, pp. 539–545, 2003.
[232]  J. C. Farré, R. Krick, S. Subramani, and M. Thumm, “Turnover of organelles by autophagy in yeast,” Current Opinion in Cell Biology, vol. 21, no. 4, pp. 522–530, 2009.
[233]  Z. Yang and D. J. Klionsky, “Mammalian autophagy: core molecular machinery and signaling regulation,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 124–131, 2010.
[234]  C. E. Chua, B. Q. Gan, and B. L. Tang, “Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation,” Cellular and Molecular Life Sciences, vol. 68, no. 20, pp. 3349–3358, 2011.
[235]  N. Mizushima, T. Yoshimori, and Y. Ohsumi, “The role of Atg proteins in autophagosome formation 1801,” Annual Review of Cell and Developmental Biology, vol. 27, pp. 107–132, 2011.
[236]  C. Kraft and S. Martens, “Mechanisms and regulation of autophagosome formation,” Current Opinion in Cell Biology, vol. 24, no. 4, pp. 496–501, 2012.
[237]  I. Monastyrska and D. J. Klionsky, “Autophagy in organelle homeostasis: peroxisome turnover,” Molecular Aspects of Medicine, vol. 27, no. 5-6, pp. 483–494, 2006.
[238]  O. Ivashchenko, P. P. Van Veldhoven, C. Brees, Y. S. Ho, S. R. Terlecky, and M. Fransen, “Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk,” Molecular Biology of the Cell, vol. 22, no. 9, pp. 1440–1451, 2011.
[239]  A. R. Bellu, M. Komori, I. J. Van der Klei, J. A. K. W. Kiel, and M. Veenhuis, “Peroxisome biogenesis and selective degradation converge at Pex14p,” Journal of Biological Chemistry, vol. 276, no. 48, pp. 44570–44574, 2001.
[240]  P. P. Hazra, I. Suriapranata, W. B. Synder, and S. Subramani, “Peroxisome remnants in pex3Δ cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes,” Traffic, vol. 3, no. 8, pp. 560–574, 2002.
[241]  T. van Zutphen, M. Veenhuis, and I. J. van der Klei, “Damaged peroxisomes are subject to rapid autophagic degradation in the yeast Hansenula polymorpha,” Autophagy, vol. 7, no. 8, pp. 863–872, 2011.
[242]  J. C. Farré, R. Manjithaya, R. D. Mathewson, and S. Subramani, “PpAtg30 tags peroxisomes for turnover by selective autophagy,” Developmental Cell, vol. 14, no. 3, pp. 365–376, 2008.
[243]  A. R. Bellu, F. A. Salomons, J. A. K. W. Kiel, M. Veenhuis, and I. J. Van Der Klei, “Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha,” Journal of Biological Chemistry, vol. 277, no. 45, pp. 42875–42880, 2002.
[244]  P. K. Kim, D. W. Hailey, R. T. Mullen, and J. Lippincott-Schwartz, “Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 52, pp. 20567–20574, 2008.
[245]  M. Lazarou, A. JinL, Kane, and R. J. Youle, “Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin,” Developmental Cell, vol. 22, no. 2, pp. 320–333, 2012.
[246]  F. Reggiori, M. Komatsu, K. Finley, and A. Simonsen, “Autophagy: more than a nonselective pathway,” International Journal of Cell Biology, vol. 2012, Article ID 219625, 18 pages, 2012.
[247]  A. van der Zand and F. Reggiori, “Up for grabs, trashing peroxisomes,” The EMBO Journal, vol. 31, no. 13, pp. 2835–2836, 2012.
[248]  C. Kraft, M. Peter, and K. Hofmann, “Selective autophagy: ubiquitin-mediated recognition and beyond,” Nature Cell Biology, vol. 12, no. 9, pp. 836–841, 2010.
[249]  R. Manjithaya, T. Y. Nazarko, J. C. Farré, and S. Subramani Suresh, “Molecular mechanism and physiological role of pexophagy,” FEBS Letters, vol. 584, no. 7, pp. 1367–1373, 2010.
[250]  P. P. Van Veldhoven and G. P. Mannaerts, “Assembly of the peroxisomal membrane,” Sub-Cellular Biochemistry, vol. 22, pp. 231–261, 1994.
[251]  S. Raychaudhuri and W. A. Prinz, “Nonvesicular phospholipid transfer between peroxisomes and the endoplasmic reticulum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 41, pp. 15785–15790, 2008.
[252]  V. I. Titorenko and R. A. Rachubinski, “Chapter 5 spatiotemporal dynamics of the ER-derived peroxisomal endomembrane system,” International Review of Cell and Molecular Biology, vol. 272, no. C, pp. 191–244, 2008.
[253]  H. J. Geuze, J. L. Murk, A. K. Stroobants et al., “Involvement of the endoplasmic reticulum in peroxisome formation,” Molecular Biology of the Cell, vol. 14, no. 7, pp. 2900–2907, 2003.
[254]  A. A. Toro, C. A. Araya, G. J. Córdova et al., “Pex3p-dependent peroxisomal biogenesis initiates in the endoplasmic reticulum of human fibroblasts,” Journal of Cellular Biochemistry, vol. 107, no. 6, pp. 1083–1096, 2009.
[255]  A. M. Motley and E. H. Hettema, “Yeast peroxisomes multiply by growth and division,” Journal of Cell Biology, vol. 178, no. 3, pp. 399–410, 2007.
[256]  H. K. Delille, B. Agricola, S. C. Guimaraes et al., “Pex11pβ-mediated growth and division of mammalian peroxisomes follows a maturation pathway,” Journal of Cell Science, vol. 123, no. 16, pp. 2750–2762, 2010.
[257]  S. Yonekawa, A. Furuno, T. Baba et al., “Sec16B is involved in the endoplasmic reticulum export of the peroxisomal membrane biogenesis factor peroxin 16 (Pex16) in mammalian cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 31, pp. 12746–12751, 2011.
[258]  Y. Y. C. Tam, A. Fagarasanu, M. Fagarasanu, and R. A. Rachubinski, “Pex3p initiates the formation of a preperoxisomal compartment from a subdomain of the endoplasmic reticulum in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 280, no. 41, pp. 34933–34939, 2005.
[259]  V. I. Titorenko, H. Chan, and R. A. Rachubinski, “Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica,” Journal of Cell Biology, vol. 148, no. 1, pp. 29–43, 2000.
[260]  A. Fagarasanu, M. Fagarasanu, and R. A. Rachubinski, “Maintaining peroxisome populations: a story of division and inheritance,” Annual Review of Cell and Developmental Biology, vol. 23, pp. 321–344, 2007.
[261]  G. A. Eitzen, R. K. Szilard, and R. A. Rachubinski, “Enlarged peroxisomes are present in oleic acid-grown Yarrowia lipolytica overexpressing the PEX16 gene encoding an intraperoxisomal peripheral membrane peroxin,” Journal of Cell Biology, vol. 137, no. 6, pp. 1265–1278, 1997.
[262]  L. Opali?ski, M. Bartoszewska, S. Fekken et al., “De novo peroxisome biogenesis in Penicillium chrysogenum is not dependent on the Pex11 family members or Pex16,” PLoS ONE, vol. 7, no. 4, Article ID e35490, 2012.
[263]  R. Saraya, A. M. Krikken, M. Veenhuis, and I. J. van der Klei, “Peroxisome reintroduction in Hansenula polymorpha requires Pex25 and Rho1,” Journal of Cell Biology, vol. 193, no. 5, pp. 885–900, 2011.
[264]  R. Ruckt?schel, A. Halbach, W. Girzalsky, H. Rottensteiner, and R. Erdmann, “De novo synthesis of peroxisomes upon mitochondrial targeting of Pex3p,” European Journal of Cell Biology, vol. 89, no. 12, pp. 947–954, 2010.
[265]  S. T. South, K. A. Sacksteder, X. Li, Y. Liu, and S. J. Gould, “Inhibitors of COPI and COPII do not block PEX3-mediated peroxisome synthesis,” Journal of Cell Biology, vol. 149, no. 7, pp. 1345–1359, 2000.
[266]  P. M. Novikoff and A. B. Novikoff, “Peroxisomes in absorptive cells of mammalian small intestine,” Journal of Cell Biology, vol. 53, no. 2, pp. 532–560, 1972.
[267]  D. M. Owen, D. Williamson, C. Rentero, and K. Gaus, “Quantitative microscopy: protein dynamics and membrane organisation,” Traffic, vol. 10, no. 8, pp. 962–971, 2009.
[268]  T. Boukh-Viner, T. Guo, A. Alexandrian et al., “Dynamic ergosterol- and ceramide-rich domains in the peroxisomal membrane serve as an organizing platform for peroxisome fusion,” Journal of Cell Biology, vol. 168, no. 5, pp. 761–773, 2005.
[269]  J. Woudenberg, K. P. Rembacz, F. A. J. van den Heuvel et al., “Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes,” Hepatology, vol. 51, no. 5, pp. 1744–1753, 2010.
[270]  J. Woudenberg, K. P. Rembacz, M. Hoekstra et al., “Lipid rafts are essential for peroxisome biogenesis in HepG2 cells,” Hepatology, vol. 52, no. 2, pp. 623–633, 2010.
[271]  J. Wolf, W. Schliebs, and R. Erdmann, “Peroxisomes as dynamic organelles: peroxisomal matrix protein import,” FEBS Journal, vol. 277, no. 16, pp. 3268–3278, 2010.
[272]  N. Cyr, K. P. Madrid, R. Strasser et al., “Leishmania donovani peroxin 14 undergoes a marked conformational change following association with peroxin 5,” Journal of Biological Chemistry, vol. 283, no. 46, pp. 1488–1499, 2008.
[273]  R. Itoh and Y. Fujiki, “Functional domains and dynamic assembly of the peroxin Pex14p, the entry site of matrix proteins,” Journal of Biological Chemistry, vol. 281, no. 15, pp. 10196–10205, 2006.
[274]  A. F. Carvalho, J. Costa-Rodrigues, I. Correia et al., “The N-terminal half of the peroxisomal cycling receptor Pex5p is a natively unfolded domain,” Journal of Molecular Biology, vol. 356, no. 4, pp. 864–875, 2006.
[275]  J. M. Herrmann, “Putting a break on protein translocation: metabolic regulation of mitochondrial protein import: microCommentary,” Molecular Microbiology, vol. 72, no. 2, pp. 275–278, 2009.
[276]  S. Hekimi, J. Lapointe, and Y. Wen, “Taking a “good” look at free radicals in the aging process,” Trends in Cell Biology, vol. 21, no. 10, pp. 569–576, 2011.
[277]  J. E. Legakis, J. I. Koepke, C. Jedeszko et al., “Peroxisome senescence in human fibroblasts,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4243–4255, 2002.
[278]  J. I. Koepke, K. A. Nakrieko, C. S. Wood et al., “Restoration of peroxisomal catalase import in a model of human cellular aging,” Traffic, vol. 8, no. 11, pp. 1590–1600, 2007.
[279]  T. Meyer, C. H?lscher, C. Schw?ppe, and A. Von Schaewen, “Alternative targeting of Arabidopsis plastidic glucose-6-phosphate dehydrogenase G6PD1 involves cysteine-dependent interaction with G6PD4 in the cytosol,” Plant Journal, vol. 66, no. 5, pp. 745–758, 2011.
[280]  O. Ostersetzer, Y. Kato, Z. Adam, and W. Sakamoto, “Multiple intracellular locations of lon protease in Arabidopsis: evidence for the localization of AtLon4 to chloroplasts,” Plant and Cell Physiology, vol. 48, no. 6, pp. 881–885, 2007.
[281]  E. B. Aksam, A. Koek, J. A. K. W. Kiel, S. Jourdan, M. Veenhuis, and I. J. van der Klei, “A peroxisomal Lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells,” Autophagy, vol. 3, no. 2, pp. 96–105, 2007.
[282]  M. Bartoszewska, C. Williams, A. Kikhney et al., “Peroxisomal proteostasis involves a Lon family protein that functions as protease and chaperone,” Journal of Biological Chemistry, vol. 287, no. 33, pp. 27380–27395, 2012.
[283]  K. Okumoto, Y. Kametani, and Y. Fujiki, “Two proteases, trypsin domain-containing 1 (Tysnd1) and peroxisomal lon protease (PsLon), cooperatively regulate fatty acid a-oxidation in peroxisomal matrix 2002,” Journal of Biological Chemistry, vol. 286, no. 52, pp. 44367–44379, 2011.
[284]  M. J. Lingard and B. Bartel, “Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import,” Plant Physiology, vol. 151, no. 3, pp. 1354–1365, 2009.
[285]  G. Twig, A. Elorza, A. J. A. Molina et al., “Fission and selective fusion govern mitochondrial segregation and elimination by autophagy,” The EMBO Journal, vol. 27, no. 2, pp. 433–446, 2008.
[286]  N. A. Bonekamp, P. Sampaio, F. V. de Abreu, G. H. Lüers, and M. Schrader, “Transient complex interactions of mammalian peroxisomes without exchange of matrix or membrane marker proteins,” Traffic, vol. 13, no. 7, pp. 960–978, 1212.
[287]  B. Agne, N. M. Meindl, K. Niederhoff et al., “Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery,” Molecular Cell, vol. 11, no. 3, pp. 635–646, 2003.
[288]  A. Fagarasanu, F. D. Mast, B. Knoblach, and R. A. Rachubinski, “Molecular mechanisms of organelle inheritance: lessons from peroxisomes in yeast,” Nature Reviews Molecular Cell Biology, vol. 11, no. 9, pp. 644–654, 2010.
[289]  B. de Vries, V. Todde, P. Stevens, F. Salomons, I. J. Van Der Klei, and M. Veenhuis, “Pex14p is not required for N-starvation induced microautophagy and in catalytic amounts for macropexophagy in Hansenula polymorpha,” Autophagy, vol. 2, no. 3, pp. 183–188, 2006.
[290]  B. Knoblach and R. A. Rachubinski, “Phosphorylation-dependent activation of peroxisome proliferator protein PEX11 controls peroxisome abundance,” Journal of Biological Chemistry, vol. 285, no. 9, pp. 6670–6680, 2010.
[291]  J. A. Kiel, K. B. Rechinger, I. J. van der Klei, F. A. Salomons, V. I. Titorenko, and M. Veenhuis M, “The Hansenula polymorpha PDD1 gene product, essential for the selective degradation of peroxisomes, is a homologue of Saccharomyces cerevisiae Vps34p,” Yeast, vol. 15, no. 9, pp. 741–754, 1999.
[292]  S. Grunau, D. Lay, S. Mindthoff et al., “The phosphoinositide 3-kinase Vps34p is required for pexophagy in Saccharomyces cerevisiae,” Biochemical Journal, vol. 434, no. 1, pp. 161–170, 2011.
[293]  Y. Nyathi and A. Baker, “Plant peroxisomes as a source of signalling molecules,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1478–1495, 2006.
[294]  K. Min, H. Son, J. Lee, G. J. Choi, J. C. Kim, and Y. W. Lee, “Peroxisome function is required for virulence and survival of Fusarium graminearum,” Molecular Plant-Microbe Interactions. In press.
[295]  M. Schrader, “Tubulo-reticular clusters of peroxisomes in living COS-7 cells: dynamic behavior and association with lipid droplets,” Journal of Histochemistry and Cytochemistry, vol. 49, no. 11, pp. 1421–1429, 2001.
[296]  S. M. Horner, H. M. Liu, H. S. Park, J. Briley, and M. Gale, “Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 35, pp. 14590–14595, 2011.
[297]  H. R. Waterham, J. Koster, C. W. T. van Roermund, P. A. W. Mooyer, R. J. A. Wanders, and J. V. Leonard, “A lethal defect of mitochondrial and peroxisomal fission,” The New England Journal of Medicine, vol. 356, no. 17, pp. 1736–1741, 2007.
[298]  V. I. Titorenko and S. R. Terlecky, “Peroxisome metabolism and cellular aging,” Traffic, vol. 12, no. 3, pp. 252–259, 2011.
[299]  S. Manivannan, C. Q. Scheckhuber, M. Veenhuis, and I. J. van der Klei, “The impact of peroxisomes on cellular aging and death,” Frontiers in Molecular and Cellular Oncology, vol. 2, article 50, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133