全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Biomarkers of Response to Antiangiogenic Therapy for Cancer

DOI: 10.5402/2012/587259

Full-Text   Cite this paper   Add to My Lib

Abstract:

Antiangiogenic therapy for cancer has gone from an intriguing hypothesis in the 1970s to an accepted treatment approach for many cancer types. It has also become a standard of care for certain eye diseases. Yet, despite the use of molecularly targeted drugs with well defined targets, to date there are no biomarkers to guide the use of antiangiogenic therapy in patients. The mechanisms of action of these drugs are also being debated. This paper discusses some of the emerging biomarker candidates for this type of cancer therapy, which have provided mechanistic insight and might be useful in the future for optimizing cancer treatment. 1. Antiangiogenic Therapy Approval of an anti-vascular endothelial growth factor (VEGF) blocking antibody (bevacizumab or Avastin, Genentech, South San Francisco, CA, USA) in combination with chemotherapy for metastatic colorectal cancer in 2004 represented a paradigm shift in cancer therapy. For the first time, an agent targeting the tumor stroma (i.e., the vasculature), as opposed to directly targeting the malignant cells proved to be a viable anticancer treatment option. Over the last decade, the United States Food and Drug Administration has approved eight anti-angiogenic agents for cancer treatment, and three anti-angiogenic agents for wet age-related macula degeneration therapy (Table 1). A large number of other anti-angiogenic agents are in late phases of clinical development (phase III clinical trials). All the approved anti-angiogenic drugs target VEGF signaling. Some are blocking the ligand, VEGF, for example, bevacizumab, aflibercept (Zaltrap/Eylea, Sanofi-Aventis, Paris, France, and Regeneron Pharmaceuticals, Tarrytown, NY, USA), ranibizumab (Lucentis, Genentech, South San Francisco, CA, USA), and pegaptanib (Macugen, OSI Pharmaceuticals, Long Island, NY, USA). Others are inhibiting the activity of the VEGF tyrosine kinase receptors (VEGFR1, VEGFR2), for example, sorafenib and regorafenib (Nexavar and Stivarga, Bayer Healthcare Pharmaceuticals, Leverkusen, Germany, and Onyx Pharmaceuticals, South San Francisco, CA, USA), sunitinib (Sutent) and axitinib (Inlyta) (Pfizer Inc., New York, NY, USA), pazopanib (Votrient, GlaxoSmithKline, Brentford, Middlesex, UK), and vandetanib (Zactima, Astra Zeneca Pharmaceuticals, Alderley Park, Cheshire, UK). Anti-VEGF therapy has become a standard of care for metastatic colo-rectal cancer (in first, second, and third line of treatment), advanced non-small cell lung cancer, renal cell carcinoma, hepatocellular carcinomas, glioblastoma, gastrointestinal stromal tumor (GIST),

References

[1]  A. L. Cheng, Y. K. Kang, Z. Chen, et al., “Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial,” The Lancet Oncology, vol. 10, no. 1, pp. 25–34, 2011.
[2]  T. F. Cloughesy, M. D. Prados, P. Wen, et al., “non-comparative clinical trial of the effect of bevacizumab alone or in combination with irinotecan (CPT-11) on 6-month progression free survival in recurrent, treatment-refractory glioblastoma,” Journal of Clinical Oncology, vol. 26, abstract 2010, 2008.
[3]  G. D. Demetri, A. T. van Oosterom, C. R. Garrett et al., “Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial,” The Lancet, vol. 368, no. 9544, pp. 1329–1338, 2006.
[4]  B. Escudier, T. Eisen, W. M. Stadler et al., “Sorafenib in advanced clear-cell renal-cell carcinoma,” The New England Journal of Medicine, vol. 356, no. 2, pp. 125–134, 2007.
[5]  B. J. Giantonio, P. J. Catalano, N. J. Meropol et al., “Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200,” Journal of Clinical Oncology, vol. 25, no. 12, pp. 1539–1544, 2007.
[6]  H. Hurwitz, L. Fehrenbacher, W. Novotny et al., “Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer,” The New England Journal of Medicine, vol. 350, no. 23, pp. 2335–2342, 2004.
[7]  J. M. Llovet, S. Ricci, V. Mazzaferro et al., “Sorafenib in advanced hepatocellular carcinoma,” The New England Journal of Medicine, vol. 359, no. 4, pp. 378–390, 2008.
[8]  R. J. Motzer, T. E. Hutson, P. Tomczak et al., “Sunitinib versus interferon alfa in metastatic renal-cell carcinoma,” The New England Journal of Medicine, vol. 356, no. 2, pp. 115–124, 2007.
[9]  B. I. Rini, S. Halabi, J. E. Rosenberg et al., “Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206,” Journal of Clinical Oncology, vol. 28, no. 13, pp. 2137–2143, 2010.
[10]  A. Sandler, R. Gray, M. C. Perry et al., “Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer,” The New England Journal of Medicine, vol. 355, no. 24, pp. 2542–2550, 2006.
[11]  C. N. Sternberg, I. D. Davis, J. Mardiak et al., “Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial,” Journal of Clinical Oncology, vol. 28, no. 6, pp. 1061–1068, 2010.
[12]  E. Van Cutsem, J. Tabernero, R. Lakomy, et al., “Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen,” Journal of Clinical Oncology, vol. 30, no. 28, pp. 3499–3506, 2012.
[13]  S. A. Wells Jr., B. G. Robinson, R. F. Gagel, et al., “Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial,” Journal of Clinical Oncology, vol. 30, pp. 134–141, 2012.
[14]  D. G. Duda, T. T. Batchelor, C. G. Willett, and R. K. Jain, “VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects,” Trends in Molecular Medicine, vol. 13, no. 6, pp. 223–230, 2007.
[15]  D. G. Duda, R. K. Jain, and C. G. Willett, “Antiangiogenics: the potential role of integrating this novel treatment modality with chemoradiation for solid cancers,” Journal of Clinical Oncology, vol. 25, no. 26, pp. 4033–4042, 2007.
[16]  L. M. Ellis, “Antiangiogenic therapy at a crossroads: clinical trial results and future directions,” Journal of Clinical Oncology, vol. 21, no. 23, supplement, pp. 281s–283s, 2003.
[17]  F. A. L. M. Eskens, “Angiogenesis inhibitors in clinical development; where are we now and where are we going?” British Journal of Cancer, vol. 90, no. 1, pp. 1–7, 2004.
[18]  N. Ferrara, K. J. Hillan, H. P. Gerber, and W. Novotny, “Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer,” Nature Reviews Drug Discovery, vol. 3, no. 5, pp. 391–400, 2004.
[19]  A. Grothey and E. Galanis, “Targeting angiogenesis: progress with anti-VEGF treatment with large molecules,” Nature Reviews Clinical Oncology, vol. 6, no. 9, pp. 507–518, 2009.
[20]  V. L. Heath and R. Bicknell, “Anticancer strategies involving the vasculature,” Nature Reviews Clinical Oncology, vol. 6, no. 7, pp. 395–404, 2009.
[21]  R. K. Jain, “Antiangiogenic therapy for cancer: current and emerging concepts,” Oncology, vol. 19, no. 4, supplement, pp. 7–16, 2005.
[22]  R. K. Jain, D. G. Duda, J. W. Clark, and J. S. Loeffler, “Lessons from phase III clinical trials on anti-VEGF therapy for cancer,” Nature Clinical Practice Oncology, vol. 3, no. 1, pp. 24–40, 2006.
[23]  L. S. Rosen, “VEGF-targeted therapy: therapeutic potential and recent advances,” Oncologist, vol. 10, no. 6, pp. 382–391, 2005.
[24]  E. Van Cutsem, D. Lambrechts, H. Prenen, R. K. Jain, and P. Carmeliet, “Lessons from the adjuvant bevacizumab trial on colon cancer: what next?” Journal of Clinical Oncology, vol. 29, no. 1, pp. 1–4, 2011.
[25]  H. M. W. Verheul and H. M. Pinedo, “Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition,” Nature Reviews Cancer, vol. 7, no. 6, pp. 475–485, 2007.
[26]  T. Fojo and C. Grady, “How much is life worth: cetuximab, non-small cell lung cancer, and the $440 billion question,” Journal of the National Cancer Institute, vol. 101, no. 15, pp. 1044–1048, 2009.
[27]  A. T. Fojo and D. R. Parkinson, “Biologically targeted cancer therapy and marginal benefits: are we making too much of too little or are we achieving too little by giving too much?” Clinical Cancer Research, vol. 16, no. 24, pp. 5972–5980, 2010.
[28]  Biomarkers Definitions Working Group, “Biomarkers and surrogate endpoints: preferred definitions and conceptual framework,” Clinical pharmacology and therapeutics, vol. 69, no. 3, pp. 89–95, 2001.
[29]  N. Murukesh, C. Dive, and G. C. Jayson, “Biomarkers of angiogenesis and their role in the development of VEGF inhibitors,” British Journal of Cancer, vol. 102, no. 1, pp. 8–18, 2010.
[30]  R. K. Jain, D. G. Duda, C. G. Willett et al., “Biomarkers of response and resistance to antiangiogenic therapy,” Nature Reviews Clinical Oncology, vol. 6, no. 6, pp. 327–338, 2009.
[31]  D. G. Duda, “Targeting tumor angiogenesis: biomarkers of angiogenesis and antiangiogenic therapy in cancer,” Angiogenesis Foundation e-publication, 2011, http://www.angio.org/cme/biom.php.
[32]  L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002.
[33]  A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008.
[34]  W. E. Naugler and M. Karin, “The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer,” Trends in Molecular Medicine, vol. 14, no. 3, pp. 109–119, 2008.
[35]  J. W. Pollard, “Tumour-educated macrophages promote tumour progression and metastasis,” Nature Reviews Cancer, vol. 4, no. 1, pp. 71–78, 2004.
[36]  G. He, G. Y. Yu, V. Temkin et al., “Hepatocyte IKKβ/NF-κB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation,” Cancer Cell, vol. 17, no. 3, pp. 286–297, 2010.
[37]  E. J. Park, J. H. Lee, G. Y. Yu et al., “Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression,” Cell, vol. 140, no. 2, pp. 197–208, 2010.
[38]  E. Pikarsky, R. M. Porat, I. Stein et al., “NF-κB functions as a tumour promoter in inflammation-associated cancer,” Nature, vol. 431, no. 7007, pp. 461–466, 2004.
[39]  M. Belakavadi and B. P. Salimath, “Mechanism of inhibition of ascites tumor growth in mice by curcumin is mediated by NF-kB and caspase activated DNase,” Molecular and Cellular Biochemistry, vol. 273, no. 1-2, pp. 57–67, 2005.
[40]  T. P. Hamsa and G. Kuttan, “GAntiangiogenic activity of berberine is mediated through the downregulation of hypoxia-inducible factor-1, VEGF, and proinflammatory mediators,” Drug and Chemical Toxicology, vol. 35, pp. 57–70, 2012.
[41]  J. Rhode, S. Fogoros, S. Zick et al., “Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells,” BMC Complementary and Alternative Medicine, vol. 7, article 44, 2007.
[42]  A. Shibata, T. Nagaya, T. Imai, H. Funahashi, A. Nakao, and H. Seo, “Inhibition of NF-κB activity decreases the VEGF mRNA expression in MDA-MB-231 breast cancer cells,” Breast Cancer Research and Treatment, vol. 73, no. 3, pp. 237–243, 2002.
[43]  L. Veschini, D. Belloni, C. Foglieni et al., “Hypoxia-inducible transcription factor-1 alpha determines sensitivity of endothelial cells to the proteosome inhibitor bortezomib,” Blood, vol. 109, no. 6, pp. 2565–2570, 2007.
[44]  M. Wu, C. Huang, X. Li et al., “LRRC4 inhibits glioblastoma cell proliferation, migration, and angiogenesis by downregulating pleiotropic cytokine expression and responses,” Journal of Cellular Physiology, vol. 214, no. 1, pp. 65–74, 2008.
[45]  W. Zhang, X. D. Zhu, H. C. Sun et al., “Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects,” Clinical Cancer Research, vol. 16, no. 13, pp. 3420–3430, 2010.
[46]  J. D. Zhao, J. Liu, Z. G. Ren et al., “Maintenance of Sorafenib following combined therapy of three-dimensional conformal radiation therapy/intensity-modulated radiation therapy and transcatheter arterial chemoembolization in patients with locally advanced hepatocellular carcinoma: a phase I/II study,” Radiation Oncology, vol. 5, no. 1, article 12, 2010.
[47]  Y. Carmi, E. Voronov, S. Dotan et al., “The role of macrophage-derived IL-1 in induction and maintenance of angiogenesis,” Journal of Immunology, vol. 183, no. 7, pp. 4705–4714, 2009.
[48]  T. Sakurai, G. He, A. Matsuzawa et al., “Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis,” Cancer Cell, vol. 14, no. 2, pp. 156–165, 2008.
[49]  G. Germano, P. Allavena, and A. Mantovani, “Cytokines as a key component of cancer-related inflammation,” Cytokine, vol. 43, no. 3, pp. 374–379, 2008.
[50]  F. Kubo, S. Ueno, K. Hiwatashi et al., “Interleukin 8 in human hepatocellular carcinoma correlates with cancer cell invasion of vessels but not with tumor angiogenesis,” Annals of Surgical Oncology, vol. 12, no. 10, pp. 800–807, 2005.
[51]  Y. Mizukami, W. S. Jo, E. M. Duerr et al., “Induction of interleukin-8 preserves the angiogenic response in HIF-1α-deficient colon cancer cells,” Nature Medicine, vol. 11, no. 9, pp. 992–997, 2005.
[52]  D. J. Brat, A. C. Bellail, and E. G. Van Meir, “The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis,” Neuro-Oncology, vol. 7, no. 2, pp. 122–133, 2005.
[53]  M. Grunewald, I. Avraham, Y. Dor et al., “VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells,” Cell, vol. 124, no. 1, pp. 175–189, 2006.
[54]  W. Li, E. Gomez, and Z. Zhang, “Immunohistochemical expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 ligand receptor system in hepatocellular carcinoma,” Journal of Experimental and Clinical Cancer Research, vol. 26, no. 4, pp. 527–533, 2007.
[55]  T. Mansuroglu, P. Ramadori, J. Dudás et al., “Expression of stem cell factor and its receptor c-Kit during the development of intrahepatic cholangiocarcinoma,” Laboratory Investigation, vol. 89, no. 5, pp. 562–574, 2009.
[56]  A. X. Zhu, D. G. Duda, D. V. Sahani, and R. K. Jain, “HCC and angiogenesis: possible targets and future directions,” Nature Reviews Clinical Oncology, vol. 8, no. 5, pp. 292–301, 2011.
[57]  P. B. Chapman, A. Hauschild, C. Robert et al., “Improved survival with vemurafenib in melanoma with BRAF V600E mutation,” The New England Journal of Medicine, vol. 364, no. 26, pp. 2507–2516, 2011.
[58]  C. S. Karapetis, S. Khambata-Ford, D. J. Jonker et al., “K-ras mutations and benefit from cetuximab in advanced colorectal cancer,” The New England Journal of Medicine, vol. 359, no. 17, pp. 1757–1765, 2008.
[59]  D. J. Slamon, B. Leyland-Jones, S. Shak et al., “Use of chemotherapy plus a monoclonal antibody against her2 for metastatic breast cancer that overexpresses HER2,” The New England Journal of Medicine, vol. 344, no. 11, pp. 783–792, 2001.
[60]  P. Carmeliet and R. K. Jain, “Molecular mechanisms and clinical applications of angiogenesis,” Nature, vol. 473, no. 7347, pp. 298–307, 2011.
[61]  H. F. Dvorak, “Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy,” Journal of Clinical Oncology, vol. 20, no. 21, pp. 4368–4380, 2002.
[62]  N. Ferrara, H. P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003.
[63]  J. Folkman, “Tumor angiogenesis: therapeutic implications,” The New England Journal of Medicine, vol. 285, no. 21, pp. 1182–1186, 1971.
[64]  J. Folkman, “Angiogenesis: an organizing principle for drug discovery?” Nature Reviews Drug Discovery, vol. 6, no. 4, pp. 273–286, 2007.
[65]  P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature, vol. 438, no. 7070, pp. 932–936, 2005.
[66]  P. Carmeliet, V. Ferreira, G. Breier et al., “Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele,” Nature, vol. 380, no. 6573, pp. 435–439, 1996.
[67]  N. Ferrara, K. Carver-Moore, H. Chen et al., “Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene,” Nature, vol. 380, no. 6573, pp. 439–442, 1996.
[68]  R. K. Jain, “Molecular regulation of vessel maturation,” Nature Medicine, vol. 9, no. 6, pp. 685–693, 2003.
[69]  M. Mazzone, D. Dettori, R. Leite de Oliveira et al., “Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization,” Cell, vol. 136, no. 5, pp. 839–851, 2009.
[70]  J. C. Chappell, S. M. Taylor, N. Ferrara, and V. L. Bautch, “Local guidance of emerging vessel sprouts requires soluble Flt-1,” Developmental Cell, vol. 17, no. 3, pp. 377–386, 2009.
[71]  R. J. Levine, S. E. Maynard, C. Qian et al., “Circulating angiogenic factors and the risk of preeclampsia,” The New England Journal of Medicine, vol. 350, no. 7, pp. 672–683, 2004.
[72]  S. E. Maynard, J. Y. Min, J. Merchan et al., “Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction hypertension, and proteinuria in preeclampsia,” Journal of Clinical Investigation, vol. 111, no. 5, pp. 649–658, 2003.
[73]  T. Tammela, G. Zarkada, E. Wallgard et al., “Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation,” Nature, vol. 454, no. 7204, pp. 656–660, 2008.
[74]  D. Hanahan and L. M. Coussens, “Accessories to the crime: functions of cells recruited to the tumor microenvironment,” Cancer Cell, vol. 21, pp. 309–322, 2012.
[75]  C. Murdoch, M. Muthana, S. B. Coffelt, and C. E. Lewis, “The role of myeloid cells in the promotion of tumour angiogenesis,” Nature Reviews Cancer, vol. 8, no. 8, pp. 618–631, 2008.
[76]  J. W. Park, R. S. Kerbel, G. J. Kelloff et al., “Rationale for biomarkers and surrogate end points in mechanism-driven oncology drug development,” Clinical Cancer Research, vol. 10, no. 11, pp. 3885–3896, 2004.
[77]  J. M. Collins, “Imaging and other biomarkers in early clinical studies: one step at a time or re-engineering drug development?” Journal of Clinical Oncology, vol. 23, no. 24, pp. 5417–5419, 2005.
[78]  S. M. Galbraith, “Antivascular cancer treatments: Imaging biomarkers in pharmaceutical drug development,” British Journal of Radiology, vol. 76, no. 1, pp. S83–S86, 2003.
[79]  D. W. Miles, S. L. de Haas, L. Dirix, et al., “Plasma biomarker analyses in the AVADO phase III randomized study of first-line bevacizumab?+?docetaxel in patients with human epidermal growth factor receptor (HER) 2-negative metastatic breast cancer,” Cancer Research, vol. 70, abstract P2-16-04, 2010.
[80]  A. Dowlati, R. Gray, D. H. Johnson, J. H. Schiller, J. Brahmer, and A. B. Sandler, “Prospective correlative assessment of biomarkers in E4599 randomized phase II/III trial of carboplatin and paclitaxel ± bevacizumab in advanced non-small cell lung cancer (NSCLC),” Journal of Clinical Oncology, vol. 24, p. 7027, 2006.
[81]  A. M. Jubb, H. I. Hurwitz, W. Bai et al., “Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer,” Journal of Clinical Oncology, vol. 24, no. 2, pp. 217–227, 2006.
[82]  C. Bernaards, P. Hegde, D. Chen, et al., “Circulating vascular endothelial growth factor (VEGF) as a biomarker for bevacizumab-based therapy in metastatic colorectal, non-small cell lung, and renal cell cancers: analysis of phase III studies,” Journal of Clinical Oncology, vol. 28, supplement, abstract 10519, no. 15, 2010.
[83]  E. Van Cutsem, S. de Haas, Y. K. Kang, et al., “Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a biomarker evaluation from the AVAGAST randomized phase III trial,” Journal of Clinical Oncology, vol. 30, pp. 2119–2127, 2012.
[84]  G. C. Jayson, S. de Haas, P. Delmar, et al., “Evaluation of plasma VEGFA as a potential predictive pan-tumour biomarker for bevacizumab,” European Journal of Cancer, vol. 47, article S96, 2011.
[85]  N. S. Horowitz, R. T. Penson, D. G. Duda, et al., “Safety, efficacy and biomarker exploration in a phase II study of bevacizumab, oxaliplatin and gemcitabine in recurrent Müllerian carcinoma,” Clinical Ovarian Cancer, vol. 4, no. 1, pp. 26–33, 2011.
[86]  L. Xu, D. G. Duda, E. di Tomaso, et al., “Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1α, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer,” Cancer Research, vol. 69, no. 20, pp. 7905–7910, 2009.
[87]  C. H. Lieu, H. T. Tran, Z. Jiang, et al., “The association of alternate VEGF ligands with resistance to anti-VEGF therapy in metastatic colorectal cancer,” Journal of Clinical Oncology, vol. 29, supplement, abstract 3533, 2011.
[88]  D. G. Duda, C. G. Willett, M. Ancukiewicz et al., “Plasma soluble VEGFR-1 is a potential dual biomarker of response and toxicity for bevacizumab with chemoradiation in locally advanced rectal cancer,” Oncologist, vol. 15, no. 6, pp. 577–583, 2010.
[89]  T. T. Batchelor, D. G. Duda, E. di Tomaso et al., “Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma,” Journal of Clinical Oncology, vol. 28, no. 17, pp. 2817–2823, 2010.
[90]  E. R. Gerstner, K. E. Emblem, A. S. Chi, et al., “Effects of cediranib, a VEGF signaling inhibitor, in combination with chemoradiation on tumor blood flow and survival in newly diagnosed glioblastoma,” Journal of Clinical Oncology, vol. 30, supplement, abstract 2009, 2012.
[91]  J. A. Meyerhardt, M. Ancukiewicz, T. A. Abrams, et al., “Phase I study of cetuximab, irinotecan, and vandetanib (ZD6474) as therapy for patients with previously treated metastastic colorectal cancer,” PLoS ONE, vol. 7, Article ID e38231, 2012.
[92]  S. M. Tolaney, D. G. Duda, Y. Boucher, et al., “A phase II study of preoperative (preop) bevacizumab (bev) followed by dose-dense (dd) doxorubicin (A)/cyclophosphamide (C)/paclitaxel (T) in combination with bev in HER2-negative operable breast cancer (BC),” Journal of Clinical Oncology, vol. 30, supplement, abstract 1026, 2012.
[93]  A. X. Zhu, M. Ancukiewicz, J. G. Supko, et al., “Clinical, pharmacodynamic (PD), and pharmacokinetic (PK) evaluation of cediranib in advanced hepatocellular carcinoma (HCC): a phase II study (CTEP, 7147),” Journal of Clinical Oncology, vol. 30, supplement, abstract 4112, 2012.
[94]  A. X. Zhu, D. V. Sahani, D. G. Duda et al., “Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study,” Journal of Clinical Oncology, vol. 27, no. 18, pp. 3027–3035, 2009.
[95]  D. Lambrechts, B. Claes, P. Delmar, et al., “VEGF pathway genetic variants as biomarkers of treatment outcome with bevacizumab: an analysis of data from the AViTA and AVOREN randomised trials,” The Lancet Oncology, vol. 13, no. 7, pp. 724–733, 2012.
[96]  W. S. Kamoun, C. D. Ley, C. T. Farrar et al., “Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice,” Journal of Clinical Oncology, vol. 27, no. 15, pp. 2542–2552, 2009.
[97]  F. Winkler, S. V. Kozin, R. T. Tong et al., “Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases,” Cancer Cell, vol. 6, no. 6, pp. 553–563, 2004.
[98]  E. di Tomaso, M. Snuderl, W. S. Kamoun et al., “Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape,” Cancer Research, vol. 71, no. 1, pp. 19–28, 2011.
[99]  A. G. Sorensen, T. T. Batchelor, W. T. Zhang et al., “A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients,” Cancer Research, vol. 69, no. 13, pp. 5296–5300, 2009.
[100]  E. O. Hanrahan, H. Y. Lin, E. S. Kim et al., “Distinct patterns of cytokine and angiogenic factor modulation and markers of benefit for vandetanib and/or chemotherapy in patients with non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no. 2, pp. 193–201, 2010.
[101]  T. T. Batchelor, A. G. Sorensen, E. di Tomaso et al., “AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients,” Cancer Cell, vol. 11, no. 1, pp. 83–95, 2007.
[102]  D. G. Duda, S. V. Kozin, N. D. Kirkpatrick, L. Xu, D. Fukumura, and R. K. Jain, “CXCL12 (SDF1α)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies?” Clinical Cancer Research, vol. 17, no. 8, pp. 2074–2080, 2011.
[103]  C. P. Raut, Y. Boucher, D. G. Duda, et al., “Effects of sorafenib on intra-tumoral interstitial fluid pressure and circulating biomarkers in patients with refractory sarcomas (NCI protocol 6948),” PLoS ONE, vol. 7, Article ID e26331, 2012.
[104]  C. G. Willett, D. G. Duda, E. Di Tomaso et al., “Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study,” Journal of Clinical Oncology, vol. 27, no. 18, pp. 3020–3026, 2009.
[105]  S. Kopetz, P. M. Hoff, J. S. Morris et al., “Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance,” Journal of Clinical Oncology, vol. 28, no. 3, pp. 453–459, 2010.
[106]  D. Foernzler, P. Delmar, M. Kockx, J. Cassidy, L. Saltz, and S. Scherer, “Tumor tissue based biomarker analysis in NO16966: a randomized phase III study of first-line bevacizumab in combination with oxaliplatin-based chemotherapy in patients with mCR,” Gastrointestinal Cancers Symposium Proceedings Abstract 374, 2010.
[107]  S. X. Yang, S. M. Steinberg, D. Nguyen, T. D. Wu, Z. Modrusan, and S. M. Swain, “Gene expression profile and angiogenic marker correlates with response to neoadjuvant bevacizumab followed by bevacizumab plus chemotherapy in breast cancer,” Clinical Cancer Research, vol. 14, no. 18, pp. 5893–5899, 2008.
[108]  C. G. Willett, Y. Boucher, D. G. Duda et al., “Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients,” Journal of Clinical Oncology, vol. 23, no. 31, pp. 8136–8139, 2005.
[109]  S. B. Wedam, J. A. Low, S. X. Yang et al., “Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer,” Journal of Clinical Oncology, vol. 24, no. 5, pp. 769–777, 2006.
[110]  S. Goel, D. G. Duda, L. Xu et al., “Normalization of the vasculature for treatment of cancer and other diseases,” Physiological Reviews, vol. 91, no. 3, pp. 1071–1121, 2011.
[111]  R. K. Jain, “Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy,” Nature Medicine, vol. 7, no. 9, pp. 987–989, 2001.
[112]  R. K. Jain, “Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,” Science, vol. 307, no. 5706, pp. 58–62, 2005.
[113]  R. K. Jain, “Taming vessels to treat cancer,” Scientific American, vol. 298, no. 1, pp. 56–63, 2008.
[114]  W. L. Ince, A. M. Jubb, S. N. Holden et al., “Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab,” Journal of the National Cancer Institute, vol. 97, no. 13, pp. 981–989, 2005.
[115]  A. Gerger, A. El-Khoueiry, W. Zhang, et al., “Pharmacogenetic angiogenesis profiling for first-line Bevacizumab plus oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer,” Clinical Cancer Research, vol. 17, pp. 5783–5792, 2011.
[116]  L. lo Giudice, M. Di Salvatore, Astone, et al., “Polymorphisms in VEGF, eNOS, COX-2, and IL-8 as predictive markers of response to bevacizumab,” Journal of Clinical Oncology, vol. 28, supplement, abstract e13502, 2010.
[117]  F. Loupakis, A. Ruzzo, L. Salvatore et al., “Retrospective exploratory analysis of VEGF polymorphisms in the prediction of benefit from first-line FOLFIRI plus bevacizumab in metastatic colorectal cancer,” BMC Cancer, vol. 11, article 247, 2011.
[118]  A. M. Schultheis, G. Lurje, K. E. Rhodes et al., “Polymorphisms and clinical outcome in recurrent ovarian cancer treated with cyclophosphamide and bevacizumab,” Clinical Cancer Research, vol. 14, no. 22, pp. 7554–7563, 2008.
[119]  B. P. Schneider, M. Wang, M. Radovich et al., “Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100,” Journal of Clinical Oncology, vol. 26, no. 28, pp. 4672–4678, 2008.
[120]  W. W. Zhang, J. E. Cortes, H. Yao et al., “Predictors of primary imatinib resistance in chronic myelogenous leukemia are distinct from those in secondary imatinib resistance,” Journal of Clinical Oncology, vol. 27, no. 22, pp. 3642–3649, 2009.
[121]  D. G. Duda, M. Ancukiewicz, and R. K. Jain, “Biomarkers of antiangiogenic therapy: how do we move from candidate biomarkers to valid biomarkers?” Journal of Clinical Oncology, vol. 28, no. 2, pp. 183–185, 2010.
[122]  A. X. Zhu, D. G. Duda, D. V. Sahani, and R. K. Jain, “Development of sunitinib in hepatocellular carcinoma: rationale, early clinical experience, and correlative studies,” Cancer Journal, vol. 15, no. 4, pp. 263–268, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133