Objective. The objective of this study was to determine the frequency of pulmonary arterial hypertension (PAH) in congenital heart disease (CHD) with an isolated, large left-to-right shunt and to indicate the factors in the development of PAH. Methods. The pressure measurements in the cardiac chambers and the calculations based on the Fick’s principle were compared among 3 separate groups of patients, respectively, with PAH, with hyperkinetic pulmonary hypertension (HPH), and with neither PAH nor HPH. Results. PAH was diagnosed in 30 (12.3%) patients, HPH in 35 (14.4%), while 177 (73.1%) were free of either. The highest risk for the development of PAH was found in the presence of perimembranous ventricular septal defect. A statistically significant difference was seen among these groups as to their left atrial pressure ( ) and the mean pulmonary arterial pressure (PAPmean; ). While a correlation was present between RpI on one hand and age on the other ( ), a multiple linear regression could not evidence any correlation among age ( ), gender ( ). Conclusion. Our findings do not allow establishing a correlation between the duration of the high pulmonary flow and pulmonary vascular resistance increase or PAH development in isolated left-to-right shunts with congenital heart diseases. 1. Introduction In all congenital heart diseases (CHD) with unrestricted left-to-right shunt, high pulmonary arterial flow can present together with pulmonary arterial hypertension (PAH); the grade of pulmonary vascular lesions is, however, important in the development of pulmonary vascular lesions [1]. The most important, in frequency, of the conditions leading to PAH in CHD are those which include left-to-right shunts [2]. While estimating the risk of PAH is of primordial importance for pediatric patients with a left-to-right shunt, there is no consensus or established guideline to date [3]. How is the risk of developing PAH in cases of CHD with left-to-right shunt characterized, and which are the determining factors? Several sets of criteria and practices have been developed regarding surgical indication and prognosis; the accepted gold standard in diagnosis is right heart catheterization [4]. This invasive technique, however, does not lend itself to easy, repeated use. Additionally, the calculation of indices for cardiac catheterization based on the Fick’s principle does not necessarily correspond to the reality. Stimuli such as increased pulmonary arterial flow and pressure lead to an imbalance in vascular tonus and to vascular remodeling [5]. The degree of pulmonary
References
[1]
R. M. F. Berger, “Pulmonary hypertension associated with congenital cardiac disease,” Cardiology in the Young, vol. 19, no. 4, pp. 311–314, 2009.
[2]
M. Beghetti, “Congenital heart disease and pulmonary hypertension,” Revista Portuguesa de Cardiologia, vol. 23, no. 2, pp. 273–281, 2004.
[3]
A. A. Lopes and P. W. Oleary, “Measurement, interpretation and use of haemodynamic parameters in pulmonary hypertension associated with congenital cardiac disease,” Cardiology in the Young, vol. 19, no. 5, pp. 431–435, 2009.
[4]
S. Viswanathan and R. K. Kumar, “Assessment of operability of congenital cardiac shunts with increased pulmonary vascular resistance,” Catheterization and Cardiovascular Interventions, vol. 71, no. 5, pp. 665–670, 2008.
[5]
D. De Wolf, “Clinical practice: pulmonary hypertension in children,” European Journal of Pediatrics, vol. 168, no. 5, pp. 515–522, 2009.
[6]
B. J. Mulder, “Changing demographics of pulmonary arterial hypertension in congenital heart disease,” European Respiratory Review, vol. 19, no. 118, pp. 308–313, 2010.
[7]
R. J. Barst, “Children deserve the same rights we do: the need for paediatric pulmonary arterial hypertension clinical drug development,” Heart, vol. 96, no. 17, pp. 1337–1338, 2010.
[8]
M. Humbert, O. Sitbon, A. Chaouat et al., “Pulmonary arterial hypertension in France: results from a national registry,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 9, pp. 1023–1030, 2006.
[9]
M. G. J. Duffels, P. M. Engelfriet, R. M. F. Berger et al., “Pulmonary arterial hypertension in congenital heart disease: an epidemiologic perspective from a Dutch registry,” International Journal of Cardiology, vol. 120, no. 2, pp. 198–204, 2007.
[10]
N. Galie, A. Manes, M. Palazzini et al., “Management of pulmonary arterial hypertension associated with congenital systemic-to-pulmonary shunts and Eisenmenger's syndrome,” Drugs, vol. 68, no. 8, pp. 1049–1066, 2008.
[11]
T. Humpl and S. N. Ingram, “Pulmonary vascular disease,” in Pediatric Cardiology, R. Anderson, E. J. Baker, D. Penny, A. N. Redington, M. L. Rigby, and G. Wernovsky, Eds., pp. 1147–1148, Churchill Livingstone Publication, 3th edition, 2010.
[12]
M. Beghetti and C. Tissot, “Pulmonary arterial hypertension in congenital heart diseases,” Seminars in Respiratory and Critical Care Medicine, vol. 30, no. 4, pp. 421–428, 2009.
[13]
M. Lévy, C. Maurey, D. S. Celermajer et al., “Impaired apoptosis of pulmonary endothelial cells is associated with intimal proliferation and irreversibility of pulmonary hypertension in congenital heart disease,” Journal of the American College of Cardiology, vol. 49, no. 7, pp. 803–810, 2007.
[14]
G. E. D'Alonzo, R. J. Barst, S. M. Ayres et al., “Survival in patients with primary pulmonary hypertension: results from a national prospective registry,” Annals of Internal Medicine, vol. 115, no. 5, pp. 343–349, 1991.
[15]
D. M. Smadja, P. Gaussem, L. Mauge et al., “Circulating endothelial cells. A new candidate biomarker of irreversible pulmonary hypertension secondary to congenital heart disease,” Circulation, vol. 119, no. 3, pp. 374–381, 2009.
[16]
D. M. Smadja, P. Gaussem, L. Mauge et al., “Comparison of endothelial biomarkers according to reversibility of pulmonary hypertension secondary to congenital heart disease,” Pediatric Cardiology, vol. 31, no. 5, pp. 657–662, 2010.