Adiponectin is an adipocyte specific cytokine which, in contrast to other adipokines, has been described to have antiinflammatory, antithrombotic, and anti-atherogenic properties. This study evaluates the association between plasma adiponectin levels with acute coronary syndrome (ACS) and angiographic coronary lesion severity in Indian population. Ninety patients included in the study were divided in two groups in 1?:?1 ratio—patients admitted with a diagnosis of ACS and those without ACS. Adiponectin and other risk markers are measured in forty-five consecutive patients in each group undergoing coronary angiography. Patients without ACS were found to have higher adiponectin ( ?μg/mL) levels than patients with ACS ( ?μg/mL) ( ). In multiple regression analysis adjusted for all other risk markers, higher adiponectin levels remain positively associated with a lower risk of ACS ( value > 0.002). The greatest increase in risk for ACS was seen at adiponectin levels ≤12.20?μg/mL in study subjects. The adiponectin levels were inversely related to the angiographic severity of coronary artery stenosis increases ( value > 0.02). The study concluded that higher adiponectin levels are independently associated with lower risk of ACS, and patients with severe angiographic coronary artery disease have lower levels of adiponectin. 1. Introduction Obesity is pandemic in industrialized and south Asian countries and has been implicated as a major cause of cardiovascular morbidity and mortality [1–4]. Adipose tissue may play an important role in mediating the chronic inflammatory process implicated in atherosclerosis and coronary artery disease. Adipocyte has an active endocrine function, as it produces several cytokines: interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and adiponectin that is a 30?kDa adipocyte complement-related protein. These cytokines may directly contribute to the development of obesity-related diseases, such as diabetes mellitus, dyslipidemia, hypertension, and atherosclerotic vascular disease [5, 6]. Adiponectin is an adipocyte specific cytokine which, in contrast to other adipokines, has been described to have antiinflammatory, antithrombotic, and anti-atherogenic properties [7–10]. It is abundant in the plasma of normal subjects, but it decreased in conditions such as obesity [11] and type-2 diabetes mellitus [12]. In healthy individuals, low plasma adiponectin levels have been associated with increased risk of cardiovascular events [13]. Therefore, it is suggested that low adiponectin levels may contribute to coronary plaque vulnerability.
References
[1]
H. B. Hubert, M. Feinleib, P. M. McNamara, and W. P. Castelli, “Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study,” Circulation, vol. 67, no. 5, pp. 968–977, 1983.
[2]
P. G. Kopelman, “Obesity as a medical problem,” Nature, vol. 404, no. 6778, pp. 635–643, 2000.
[3]
E. B. Rimm, M. J. Stampfer, E. Giovannucci et al., “Body size and fat distribution as predictors of coronary heart disease among middle-aged and older US men,” American Journal of Epidemiology, vol. 141, no. 12, pp. 1117–1127, 1995.
[4]
W. C. Willett, J. E. Manson, M. J. Stampfer et al., “Weight, weight change, and coronary heart disease in women: risk within the “normal” weight range,” The Journal of the American Medical Association, vol. 273, no. 6, pp. 461–466, 1995.
[5]
B. M. Spiegelman, L. Choy, G. S. Hotamisligil, R. A. Graves, and P. Tontonoz, “Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes,” The Journal of Biological Chemistry, vol. 268, no. 10, pp. 6823–6826, 1993.
[6]
D. C. W. Lau, B. Dhillon, H. Yan, P. E. Szmitko, and S. Verma, “Adipokines: molecular links between obesity and atheroslcerosis,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 288, no. 5, pp. H2031–H2041, 2005.
[7]
K. Maeda, K. Okubo, I. Shimomura, T. Funahashi, Y. Matsuzawa, and K. Matsubara, “cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant gene transcript 1),” Biochemical and Biophysical Research Communications, vol. 221, no. 2, pp. 286–289, 1996.
[8]
N. Ouchi, S. Kihara, Y. Arita et al., “Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin,” Circulation, vol. 100, no. 25, pp. 2473–2476, 1999.
[9]
N. Ouchi, S. Kihara, Y. Arita et al., “Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages,” Circulation, vol. 103, no. 8, pp. 1057–1063, 2001.
[10]
H. Kato, H. Kashiwagi, M. Shiraga et al., “Adiponectin acts as an endogenous antithrombotic factor,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 1, pp. 224–230, 2006.
[11]
Y. Arita, S. Kihara, N. Ouchi et al., “Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity,” Biochemical and Biophysical Research Communications, vol. 257, no. 1, pp. 79–83, 1999.
[12]
K. Hotta, T. Funahashi, Y. Arita et al., “Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 6, pp. 1595–1599, 2000.
[13]
T. Pischon, C. J. Girman, G. S. Hotamisligil, N. Rifai, F. B. Hu, and E. B. Rimm, “Plasma adiponectin levels and risk of myocardial infarction in men,” The Journal of the American Medical Association, vol. 291, no. 14, pp. 1730–1737, 2004.
[14]
Y. Arita, S. Kihara, N. Ouchi et al., “Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity,” Biochemical and Biophysical Research Communications, vol. 257, no. 1, pp. 79–83, 1999.
[15]
Y. Nakamura, K. Shimada, D. Fukuda et al., “Implications of plasma concentrations of adiponectin in patients with coronary artery disease,” Heart, vol. 90, no. 5, pp. 528–533, 2004.
[16]
R. Wolk, P. Berger, R. J. Lennon, E. S. Brilakis, D. E. Davison, and V. K. Somers, “Association between plasma adiponectin levels and unstable coronary syndromes,” European Heart Journal, vol. 28, no. 3, pp. 292–298, 2007.
[17]
K. Dunajska, A. Milewicz, D. J?drzejuk et al., “Plasma adiponectin concentration in relation to severity of coronary atherosclerosis and cardiovascular risk factors in middle-aged men,” Endocrine, vol. 25, no. 3, pp. 215–221, 2004.
[18]
F. Otsuka, S. Sugiyama, S. Kojima et al., “Plasma adiponectin levels are associated with coronary lesion complexity in men with coronary artery disease,” Journal of the American College of Cardiology, vol. 48, no. 6, pp. 1155–1162, 2006.
[19]
Y. Yamamoto, H. Hirose, I. Saito et al., “Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population,” Clinical Science, vol. 103, no. 2, pp. 137–142, 2002.