Objective. To evaluate the association of BNP and CRP with the development of postoperative atrial fibrillation following coronary artery bypass grafting surgery. Methods. The series consists of 125 patients (aged 65 ± 9 years), who underwent isolated CABG-surgery. BNP and CRP levels were measured pre- and 24 hours postoperatively and their correlation to the development of postoperative AF was analyzed. Results. Forty-four patients (35%) developed AF postoperatively. They were significantly older (68 ± 8 versus 63 ± 9, P = 0.01) and predominantly nonsmokers (18% versus 46%, P = 0.004), compared to the non-AF cases. In addition they showed significant higher preoperative mean BNP levels of 629 versus 373?pg/mL (P = 0.019). Postoperative BNP levels were significantly higher in both groups (AF-group: 1032?pg/mL versus non-AF group: 705?pg/mL; ), while there was a trend of more increased postoperative levels in AF-cases (P = 0.065). AF-episodes appeared significantly more frequent in the two highest quartiles of BNP levels with 44% (P = 0.035). On the contrary pre- and postoperative CRP levels were not associated with AF. Multivariable analysis revealed only increased preoperative BNP levels as independent predictor for postoperative AF (P = 0.036). Conclusion. Elevated preoperative BNP serum levels are associated with the development of post-CABG AF, while CRP does not seem to be influential. 1. Introduction Atrial fibrillation (AF) occurs in 25–40%, representing the most common arrhythmia in patients undergoing isolated coronary artery bypass surgery (CABG) [1–3]. Although it is not a life-threatening rhythm disturbance and may present as self-limiting onset, it has major medical and economical implications. It may compromise cardiac function, increase 2- to 3-fold the risk of stroke and thromboembolism, result in iatrogenic complications due to additional treatment efforts, prolong hospitalization duration (by 1–3 days), and elevate treatment cost [3–7]. Numerous studies, mainly retrospective, have been conducted to clarify the pathogenesis of postoperative AF as well to identify predisposing factors. However, the exact etiologic pattern still remains unclear. The proposed contributory factors include inflammation triggered by cardiopulmonary bypass, beta-blocker withdrawal, right coronary artery stenosis, atrial ischemia, inadequate intraoperative cardiac protection, perioperative ischemic injury, postoperative pericarditis, autonomic imbalance, and fluid/electrolyte disturbances during the intra- and postoperative periods [8–14]. Brain natriuretic
References
[1]
E. L. Michelson, J. Morganroth, and H. MacVaugh III, “Postoperative arrhythmias after coronary artery and cardiac valvular surgery detected by long-term electrocardiographic monitoring,” American Heart Journal, vol. 97, no. 4, pp. 442–448, 1979.
[2]
M. J. Magee, M. A. Herbert, T. M. Dewey et al., “Atrial fibrillation after coronary artery bypass grafting surgery: development of a predictive risk algorithm,” Annals of Thoracic Surgery, vol. 83, no. 5, pp. 1707–1712, 2007.
[3]
A. G. Zaman, R. A. Archbold, G. Helft, E. A. Paul, N. P. Curzen, and P. G. Mills, “Atrial fibrillation after coronary artery bypass surgery: a model for preoperative risk stratification,” Circulation, vol. 101, no. 12, pp. 1403–1408, 2000.
[4]
S. F. Aranki, D. P. Shaw, D. H. Adams et al., “Predictors of atrial fibrillation after coronary artery surgery: current trends and impact on hospital resources,” Circulation, vol. 94, no. 3, pp. 390–397, 1996.
[5]
J. P. Mathew, R. Parks, J. S. Savino et al., “Atrial fibrillation following coronary artery bypass graft surgery: predictors, outcomes, and resource utilization,” Journal of the American Medical Association, vol. 276, no. 4, pp. 300–306, 1996.
[6]
I. Bakir, F. P. Casselman, P. Brugada et al., “Current strategies in the surgical treatment of atrial fibrillation: review of the literature and Onze Lieve Vrouw clinic’s strategy,” Annals of Thoracic Surgery, vol. 83, no. 1, pp. 331–340, 2007.
[7]
G. J. Taylor, S. A. Malik, J. A. Colliver et al., “Usefulness of atrial fibrillation as a predictor of stroke after isolated coronary artery bypass grafting,” American Journal of Cardiology, vol. 60, no. 10, pp. 905–907, 1987.
[8]
S. Kolvekar, A. D'Souza, P. Akhtar, C. Reek, C. Garratt, and T. Spyt, “Role of atrial ischaemia in development of atrial fibrillation following coronary artery bypass surgery,” European Journal of Cardio-Thoracic Surgery, vol. 11, no. 1, pp. 70–75, 1997.
[9]
M. Gaudino, F. Andreotti, R. Zamparelli et al., “The -174G/C interleukin-6 polymorphism influences postoperative interleukin-6 levels and postoperative atrial fibrillation. Is atrial fibrillation an inflammatory complication?” Circulation, vol. 108, no. 10, supplement 1, pp. II195–II199, 2003.
[10]
M. Budeus, P. Feindt, E. Gams et al., “β-Blocker prophylaxis for atrial fibrillation after coronary artery bypass grafting in patients with sympathovagal imbalance,” Annals of Thoracic Surgery, vol. 84, no. 1, pp. 61–66, 2007.
[11]
L. A. Mendes, G. P. Connelly, P. A. McKenney et al., “Right coronary artery stenosis: an independent predictor of atrial fibrillation after coronary artery bypass surgery,” Journal of the American College of Cardiology, vol. 25, no. 1, pp. 198–202, 1995.
[12]
P. K. Smith, W. C. Buhrman, and J. M. Levett, “Supraventricular conduction abnormalities following cardiac operations. A complication of inadequate atrial preservation,” Journal of Thoracic and Cardiovascular Surgery, vol. 85, no. 1, pp. 105–115, 1983.
[13]
E. J. Pehkonen, P. J. Makynen, M. J. Kataja, and M. R. Tarkka, “Atrial fibrillation after blood and crystalloid cardioplegia in CABG patients,” Thoracic and Cardiovascular Surgeon, vol. 43, no. 4, pp. 200–203, 1995.
[14]
P. A. Casthely, T. Yoganathan, C. Komer, and M. Kelly, “Magnesium and arrhythmias after coronary artery bypass surgery,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 8, no. 2, pp. 188–191, 1994.
[15]
M. Mukoyama, K. Nakao, K. Hosoda et al., “Brain natriuretic peptide as a novel cardiac hormone in humans: evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide,” Journal of Clinical Investigation, vol. 87, no. 4, pp. 1402–1412, 1991.
[16]
O.-P. Kangasniemi, F. Biancari, J. Luukkonen et al., “Preoperative C-reactive protein is predictive of long-term outcome after coronary artery bypass surgery,” European Journal of Cardio-Thoracic Surgery, vol. 29, no. 6, pp. 983–985, 2006.
[17]
H. Gasparovic, I. Burcar, T. Kopjar et al., “NT-pro-BNP, but not C-reactive protein, is predictive of atrial fibrillation in patients undergoing coronary artery bypass surgery,” European Journal of Cardio-Thoracic Surgery, vol. 37, no. 1, pp. 100–105, 2010.
[18]
K. Spiliopoulos, V. Bagiatis, and O. Deutsch, “Performance of EuroSCORE II compared to EuroSCORE I in predicting operative and mid-term mortality of patients from a single center after combined coronary artery bypass grafting and aortic valve replacement,” General Thoracic and Cardiovascular Surgery, 2013.
[19]
P. H. Gibson, B. L. Croal, B. H. Cuthbertson et al., “Use of preoperative natriuretic peptides and echocardiographic parameters in predicting new-onset atrial fibrillation after coronary artery bypass grafting: a prospective comparative study,” American Heart Journal, vol. 158, no. 2, pp. 244–251, 2009.
[20]
T. Akazawa, H. Nishihara, H. Iwata, K. Warabi, M. Ohshima, and E. Inada, “Preoperative plasma brain natriuretic peptide level is an independent predictor of postoperative atrial fibrillation following off-pump coronary artery bypass surgery,” Journal of Anesthesia, vol. 22, no. 4, pp. 347–353, 2008.
[21]
S. Attaran, R. Sherwood, J. Desai et al., “Brain natriuretic peptide a predictive marker in cardiac surgery,” Interactive Cardiovascular and Thoracic Surgery, vol. 9, no. 4, pp. 662–666, 2009.
[22]
M.-H. Song, Y. Kobayashi, and H. Michi, “Clinical implication of atrial and brain natriuretic peptide in coronary artery bypass grafting,” Asian Cardiovascular and Thoracic Annals, vol. 12, no. 1, pp. 41–46, 2004.
[23]
M. A. A. Mahar, A. Rainio, M. Ilves et al., “Changes in natriuretic peptides, apelin and adrenomedullin after off-pump and on-pump coronary artery bypass surgery,” Journal of Cardiovascular Surgery, vol. 49, no. 6, pp. 783–791, 2008.
[24]
V. Guerin, S. B. Ayed, S. Varnous et al., “Release of brain natriuretic-related peptides (BNP, NT-proBNP) and cardiac troponins (cTnT, cTnI) in on-pump and off-pump coronary artery bypass surgery,” Surgery Today, vol. 36, no. 9, pp. 783–789, 2006.
[25]
D. E. Hilleman, C. B. Hunter, S. M. Mohiuddin, and S. Maciejewski, “Pharmacological management of atrial fibrillation following cardiac surgery,” American Journal of Cardiovascular Drugs, vol. 5, no. 6, pp. 361–369, 2005.
[26]
J. Cosgrave, J. B. Foley, R. Kelly et al., “Perioperative serum inflammatory response and the development of atrial fibrillation after coronary artery bypass surgery,” Heart, vol. 91, no. 11, pp. 1475–1476, 2005.
[27]
K. Ishida, F. Kimura, M. Imamaki et al., “Relation of inflammatory cytokines to atrial fibrillation after off-pump coronary artery bypass grafting,” European Journal of Cardio-Thoracic Surgery, vol. 29, no. 4, pp. 501–505, 2006.
[28]
B. H. Cuthbertson, B. L. Croal, D. Rae et al., “N-terminal pro-B-type natriuretic peptide levels and early outcome after cardiac surgery: a prospective cohort study,” British Journal of Anaesthesia, vol. 103, no. 5, pp. 647–653, 2009.