全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Attitudes of Implanting Physicians about Cardiac Rhythm Management Devices and Their Features

DOI: 10.1155/2013/247586

Full-Text   Cite this paper   Add to My Lib

Abstract:

Modern cardiac rhythm management systems have become increasingly complex. The decision on which specific system to implant in a given patient often rests with the implanting physician. We conducted a multiple-choice survey to assess the opinions and preferences of cardiologists and electrophysiologists who implant and follow cardiac rhythm management systems. Reliability and battery longevity were viewed as the most important characteristics in device selection. Patient characteristics which most affected device choice were pacing indication and life expectancy. Remote technology was used in 47% of pacemaker patients, 64% of ICD patients, and 65% of CRT-D patients, with wireless (radiofrequency) remote patient monitoring associated with higher patient compliance rates (74% versus 64%, resp.). Wireless remote patient management with alerts for atrial tachyarrhythmias was felt to be important by 76% of respondents. When choosing an MR-conditional device, physicians deemed patients with prior orthopedic problems, a history of cancer, or neurological disorders to be more likely to require a future MRI. Device longevity and reliability remain the most important factors which influence device selection. Wireless remote patient monitoring with alerts is considered increasingly important when choosing a specific cardiac rhythm management system to implant. 1. Introduction Modern cardiac rhythm management (CRM) devices range from single-chamber pacemakers to implantable cardioverter-defibrillators (ICDs) with cardiac resynchronization therapy (CRT). The decision of which device to implant in a given patient often rests with the implanting physician. Over the past decade, these devices have increased not only in number, but also in features offered; for that reason, many factors influence device selection. We report here on results of a survey conducted among electrophysiologists (EPs) and cardiologists aimed at determining factors that influence device selection for their patients. A major recent breakthrough in cardiac rhythm management has been the advent of remote technology, which today is available in pacemakers as well as ICD and CRT-D systems. Remote technology today includes “remote follow-up,” in which data can be periodically downloaded from the device, either through patient interaction with a transmitter system (inductive systems) or automatically (wireless) with no patient participation. Remote follow-up allows clinics to perform periodic routine patient check-ups without the need for an in-clinic visit. Wireless systems enable the further

References

[1]  P. A. Wolf, R. D. Abbott, and W. B. Kannel, “Atrial fibrillation as an independent risk factor for stroke: the Framingham study,” Stroke, vol. 22, no. 8, pp. 983–988, 1991.
[2]  R. P. Ricci, L. Morichelli, A. Gargaro, M. T. Laudadio, and M. Santini, “Home monitoring in patients with implantable cardiac devices: is there a potential reduction of stroke risk? Results from a computer model tested through monte carlo simulations,” Journal of Cardiovascular Electrophysiology, vol. 20, no. 11, pp. 1244–1251, 2009.
[3]  J. S. Healey, S. J. Connolly, M. R. Gold et al., “Subclinical atrial fibrillation and the risk of stroke,” The New England Journal of Medicine, vol. 366, no. 2, pp. 120–129, 2012.
[4]  W. Jung, V. Zvereva, B. Hajredini, and S. J?ckle, “Safe magnetic resonance image scanning of the pacemaker patient: current technologies and future directions,” Europace, vol. 14, no. 5, pp. 631–637, 2012.
[5]  D. A. Langman, I. B. Goldberg, J. Judy, J. Paul Finn, and D. B. Ennis, “The dependence of radiofrequency induced pacemaker lead tip heating on the electrical conductivity of the medium at the lead tip,” Magnetic Resonance in Medicine, vol. 68, no. 2, pp. 606–613, 2012.
[6]  J. S. Shinbane, P. M. Colletti, and F. G. Shellock, “Magnetic resonance imaging in patients with cardiac pacemakers: era of “MR conditional” designs,” Journal of Cardiovascular Magnetic Resonance, vol. 13, no. 1, article 63, 2011.
[7]  A. J. Moss, W. Jackson Hall, D. S. Cannom et al., “Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia,” The New England Journal of Medicine, vol. 335, no. 26, pp. 1933–1940, 1996.
[8]  A. J. Moss, W. Zareba, W. Jackson Hall et al., “Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction,” The New England Journal of Medicine, vol. 346, no. 12, pp. 877–883, 2002.
[9]  G. H. Bardy, K. L. Lee, D. B. Mark et al., “Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure,” The New England Journal of Medicine, vol. 352, no. 3, pp. 225–237, 2005.
[10]  J. P. Singh, H. U. Klein, D. T. Huang et al., “Left ventricular lead position and clinical outcome in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT) trial,” Circulation, vol. 123, no. 11, pp. 1159–1166, 2011.
[11]  M. R. Bristow, L. A. Saxon, J. Boehmer et al., “Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure,” The New England Journal of Medicine, vol. 350, no. 21, pp. 2140–2227, 2004.
[12]  J. G. F. Cleland, J.-C. Daubert, E. Erdmann et al., “The effect of cardiac resynchronization on morbidity and mortality in heart failure,” The New England Journal of Medicine, vol. 352, no. 15, pp. 1539–1549, 2005.
[13]  W. H. Maisel, R. G. Hauser, S. C. Hammill et al., “Recommendations from the Heart Rhythm Society Task Force on Lead Performance Policies and Guidelines: developed in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” Heart Rhythm, vol. 6, no. 6, pp. 869–885, 2009.
[14]  J. E. Poole, M. J. Gleva, T. Mela et al., “Complication rates associated with pacemaker or implantable cardioverter-defibrillator generator replacements and upgrade procedures: results from the REPLACE registry,” Circulation, vol. 122, no. 16, pp. 1553–1561, 2010.
[15]  D. Z. Uslan, M. J. Gleva, D. K. Warren et al., “Cardiovascular implantable electronic device replacement infections and prevention: results from the REPLACE registry,” Pacing and Clinical Electrophysiology, vol. 35, no. 1, pp. 81–87, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133