全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Doxapram Hydrochloride Aggravates Adrenaline-Induced Arrhythmias Accompanied by Bidirectional Ventricular Tachycardia

DOI: 10.1155/2014/212045

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objectives. Doxapram hydrochloride is a respiratory stimulant that has an inhibitory effect on myocardial IK1 potassium channels and is thought to increase membrane instability and excitability in myocardial cells. We examined the arrhythmogenic effects of doxapram hydrochloride in a rat model of halothane adrenaline-induced arrhythmia. Methods. Thirteen female Wistar rats (12–14 weeks old) were used in the study. Animals were anesthetized with inhalation of halothane to permit observation of the effects of doxapram hydrochloride on halothane adrenaline-induced arrhythmia. Time-dependent changes in ECG repolarization characteristics (QT, QTc, JTp, JT, and Tp-e intervals) were studied. Results. Doxapram hydrochloride itself did not induce arrhythmia but did induce bidirectional ventricular tachycardia after addition of adrenaline. Conclusion. Drug-induced impairment of intracellular Ca2+ regulation caused BVT in the absence of genetic abnormalities in proteins in the sarcoplasmic reticulum. 1. Introduction Doxapram hydrochloride is a respiratory stimulant that is mainly used for anesthesia awareness in adult patients and treatment of apneic episodes in low birth weight infants. The mechanism of action of doxapram hydrochloride involves stimulation of the respiratory center, that is, effects on K+ channels such as TASK-1 and -3 in carotid bodies, which depolarizes membrane potentials and increases secretion of neurotransmitters [1, 2]. However, the pharmacological action of doxapram hydrochloride in other organs has not been studied extensively. Halothane increases myocardial sensitivity to adrenaline, and adrenaline administered under halothane anesthesia readily causes premature ventricular contraction, resulting in fatal ventricular fibrillation; therefore, this combination is used as an anesthetic-induced arrhythmic model [3, 4]. We have found that clinical doses of doxapram hydrochloride have no effect on the heart conduction system in rats [5], while doxapram hydrochloride at high doses prolongs the myocardial repolarization interval and causes deterioration of halothane adrenaline-induced arrhythmia. In this study, we focused on doxapram hydrochloride-induced bidirectional ventricular tachycardia (BVT) that is a rare entity occurring in conditions associated with intracellular calcium overload. Delayed afterdepolarizations occurring in different zones of the conduction system are thought to best explain its mechanism [6]. We studied changes in ECG repolarization characteristics before and after onset of tachycardia. 2. Methods 2.1. Animals Female

References

[1]  C. Peers, “Effects of doxapram on ionic currents recorded in isolated type I cells of the neonatal rat carotid body,” Brain Research, vol. 568, no. 1-2, pp. 116–122, 1991.
[2]  R. Anderson-Beck, L. Wilson, S. Brazier, I. E. Hughes, and C. Peers, “Doxapram stimulates dopamine release from the intact rat carotid body in vitro,” Neuroscience Letters, vol. 187, no. 1, pp. 25–28, 1995.
[3]  C. K. Spiss, C. M. Smith, and M. Maze, “Halothane-epinephrine arrhythmias and adrenergic responsiveness after chronic imipramine administration in dogs,” Anesthesia and Analgesia, vol. 63, no. 9, pp. 825–828, 1984.
[4]  M. Maze and C. M. Smith, “Identification of receptor mechanism mediating epinephrine-induced arrhythmias during halothane anesthesia in the dog,” Anesthesiology, vol. 59, no. 4, pp. 322–326, 1983.
[5]  M. Miyata, T. Hata, N. Kato et al., “Dynamic QT/RR relationship of cardiac conduction in premature infants treated with low-dose doxapram hydrochloride,” Journal of Perinatal Medicine, vol. 35, no. 4, pp. 330–333, 2007.
[6]  A. A. Baher, M. Uy, F. Xie, A. Garfinkel, Z. Qu, and J. N. Weiss, “Bidirectional ventricular tachycardia: ping pong in the HisPurkinje system,” Heart Rhythm, vol. 8, no. 4, pp. 599–605, 2011.
[7]  A. Besana, A. Barbuti, M. A. Tateyama, A. J. Symes, R. B. Robinson, and S. J. Feinmark, “Activation of protein kinase C ε inhibits the two-pore domain K+ channel, TASK-1, inducing repolarization abnormalities in cardiac ventricular myocytes,” Journal of Biological Chemistry, vol. 279, no. 32, pp. 33154–33160, 2004.
[8]  S. A. Jones, M. J. Morton, M. Hunter, and M. R. Boyett, “Expression of TASK-1, a pH-sensitive twin-pore domain K+ channel, in rat myocytes,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 283, no. 1, pp. H181–H185, 2002.
[9]  J. Prestle, P. M. L. Janssen, A. P. Janssen et al., “Overexpression of FK506-binding protein FKBP12.6 in cardiomyocytes reduces ryanodine receptor-mediated Ca2+ leak from the sarcoplasmic reticulum and increases contractility,” Circulation Research, vol. 88, no. 2, pp. 188–194, 2001.
[10]  S. G. Priori, C. Napolitano, N. Tiso et al., “Mutataions in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia,” Circulation, vol. 103, no. 2, pp. 196–200, 2001.
[11]  P. J. Laitinen, K. M. Brown, K. Piippo et al., “Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia,” Circulation, vol. 103, no. 4, pp. 485–490, 2001.
[12]  A. Castellanos, J. Ferreiro, and K. Pefkaros, “Effects of lignocaine on bidirectional tachycardia and on digitalis-induced atrial tachycardia with block,” British Heart Journal, vol. 48, no. 1, pp. 27–32, 1982.
[13]  C. Grimard, A. De Labriolle, B. Charbonnier, and D. Babuty, “Bidirectional ventricular tachycardia resulting from digoxin toxicity,” Journal of Cardiovascular Electrophysiology, vol. 16, no. 7, pp. 807–808, 2005.
[14]  A. R. Marks, S. Priori, M. Memmi, K. Kontula, and P. J. Laitinen, “Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia,” Journal of Cellular Physiology, vol. 190, no. 1, pp. 1–6, 2002.
[15]  N. Andersen and S. H. Johansen, “Incidence of catechol-amine-induced arrhythmias during halothane anesthesia,” Anesthesiology, vol. 24, pp. 51–56, 1963.
[16]  A. Takahara, A. Sugiyama, Y. Satoh, K. Wang, S. Honsho, and K. Hashimoto, “Halothane sensitizes the canine heart to pharmacological IKr blockade,” European Journal of Pharmacology, vol. 507, no. 1–3, pp. 169–177, 2005.
[17]  P. Gupta, C. Patel, H. Patel et al., “Tp-e/QT ratio as an index of arrhythmogenesis,” Journal of Electrocardiology, vol. 41, no. 6, pp. 567–574, 2008.
[18]  S.-I. Koumi, C. L. Backer, C. E. Arentzen, and R. Sato, “β-adrenergic modulation of the inwardly rectifying potassium channel in isolated human ventricular myocytes. Alteration in channel response to β- adrenergic stimulation in failing human hearts,” Journal of Clinical Investigation, vol. 96, no. 6, pp. 2870–2881, 1995.
[19]  F. Charpentier, J. Mérot, G. Loussouarn, and I. Baró, “Delayed rectifier K+ currents and cardiac repolarization,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 1, pp. 37–44, 2010.
[20]  A. Takahara, A. Sugiyama, and K. Hashimoto, “Reduction of repolarization reserve by halothane anaesthesia sensitizes the guinea-pig heart for drug-induced QT interval prolongation,” British Journal of Pharmacology, vol. 146, no. 4, pp. 561–567, 2005.
[21]  Y.-C. Lin, J. Huang, H. Kan, V. Castranova, J. C. Frisbee, and H.-G. Yu, “Defective calcium inactivation causes long QT in obese insulin-resistant rat,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 302, no. 4, pp. H1013–H1022, 2012.
[22]  M. Cerrone, S. F. Noujaim, E. G. Tolkacheva et al., “Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia,” Circulation Research, vol. 101, no. 10, pp. 1039–1048, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133