Objectives. The aim of this study was to investigate the occurrence of myocardial injury in critically ill children through assessment of cardiac troponin T levels and whether levels are associated with disease severity and myocardial dysfunction measured by echocardiography. Methods. Over a 6-month period, this case control study included 50 patients admitted to Pediatric Intensive Care Unit of Zagazig University Children’s Hospital. Twenty-five healthy children were included as a control group. Demographic and clinical data including the pediatric index of mortality II score were recorded. Echocardiographic examination was done and level of cardiac troponin T was measured using Elecsys Troponin T STAT Immunoassay. Results. Cardiac troponin T levels were significantly higher in critically ill in comparison to healthy children (median 22 (18–28)?pg/mL versus 10 (10-10)?pg/mL, ). Cardiac troponin T levels correlated positively with duration of ventilation as well as with disease severity and correlated negatively with left ventricular fractional shortening. Moreover, cardiac troponin T levels were significantly higher in nonsurvivors when compared to survivors (median 34.5 (27.5–41.5)?pg/mL versus 20 (18–24) pg/mL, ). Conclusion. In critically ill children, cardiac troponin T levels were elevated and were associated with duration of ventilation and disease severity. 1. Introduction Cardiac troponins I and T are regulatory proteins that control the calcium-mediated interaction of actin and myosin, producing myocardial contraction [1]. Since troponins do not occur in extracellular space, their appearance in serum is sensitive and specific marker of myocardium damage [2]. Cardiac specific troponins T and I have been established as the gold standard biochemical markers for myocardial necrosis [3]. An unexpectedly high incidence of clinically unrecognized myocardial injury, assessed by elevated cardiac troponin I levels, has previously been reported in critically ill adult patients [4]. Elevated cardiac troponins levels have been detected in children critically ill with congenital heart disease before and after cardiac surgery [5]. In patients without congenital heart disease raised cardiac troponin levels have been found in pediatric intensive care unit (PICU) admissions with severe respiratory syncytial virus infection [6] and with meningococcal and other forms of septicemia [7, 8]. To our knowledge, there is no published data concerning myocardial injury in PICUs in our country. So, the aim of this study was to evaluate myocardial injury in critically ill
References
[1]
J. E. Adams III, D. R. Abendschein, and A. S. Jaffe, “Biochemical markers of myocardial injury: is MB creatine kinase the choice for the 1990s?” Circulation, vol. 88, no. 2, pp. 750–763, 1993.
[2]
B. Solnica, “Cardiac troponins,” Medycyna Praktyczna, vol. 10, pp. 133–136, 2004.
[3]
?. Hetland and K. Dickstein, “Cardiac troponins I and T in patients with suspected acute coronary syndrome: a comparative study in a routine setting,” Clinical Chemistry, vol. 44, no. 7, pp. 1430–1436, 1998.
[4]
T. M. Guest, A. V. Ramanathan, P. G. Tuteur, K. B. Schechtman, J. H. Ladenson, and A. S. Jaffe, “Myocardial injury in critically ill patients: a frequently unrecognized complication,” Journal of the American Medical Association, vol. 273, no. 24, pp. 1945–1949, 1995.
[5]
H. Imura, M. Caputo, A. Parry, A. Pawade, G. D. Angelini, and M.-S. Suleiman, “Age-dependent and hypoxia-related differences in myocardial protection during pediatric open heart surgery,” Circulation, vol. 103, no. 11, pp. 1551–1556, 2001.
[6]
M. Eisenhut, D. Sidaras, R. Johnson, P. Newland, and K. Thorburn, “Cardiac troponin T levels and myocardial involvement in children with severe respiratory syncytial virus lung disease,” Acta Paediatrica, vol. 93, no. 7, pp. 887–890, 2004.
[7]
F. Gurkan, A. Alkaya, A. Ece et al., “Cardiac troponin-I as a marker of myocardial dysfunction in children with septic shock,” Swiss Medical Weekly, vol. 134, no. 39-40, pp. 593–596, 2004.
[8]
G. Briassoulis, M. Narlioglou, N. Zavras, and T. Hatzis, “Myocardial injury in meningococcus-induced purpura fulminans in children,” Intensive Care Medicine, vol. 27, no. 6, pp. 1073–1082, 2001.
[9]
Roche Diagnostics GmbH: Troponin T STAT data sheet, Mannheim, Germany, Roche Diagnostics GmbH, 1999.
[10]
D. J. Sahn, A. DeMaria, J. Kisslo, and A. Weyman, “Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements,” Circulation, vol. 58, no. 6, pp. 1072–1083, 1978.
[11]
J. T. Berger and R. Jonas, “Cardiac physiology and pathophysiology,” in Pediatric Critical Care Medicine, S. Anthony and M. P. Washington, Eds., pp. 196–241, Lippincott Williams & Wilkins, 1st edition, 2006.
[12]
S. J. Clark, M. Eisenhut, D. Sidaras, S. W. Hancock, P. Newland, and K. Thorburn, “Myocardial injury in infants ventilated on the paediatric intensive care unit: a case control study,” Critical Care, vol. 10, no. 5, article R128, 2006.
[13]
P. F. Cohen, “Mechanisms of myocardial ischemia,” American Journal of Cardiology, vol. 70, pp. 14–18, 1992.
[14]
J. Gram, “The haemostatic balance in groups of thrombosis-prone patients. With particular reference to fibrinolysis in patients with myocardial infarction,” Danish Medical Bulletin, vol. 37, no. 3, pp. 210–234, 1990.
[15]
A. H. Kutom and H. R. Gibbs, “Myocardial infarction due to intracoronary thrombi without significant coronary artery disease in systemic lupus erythematosus,” Chest, vol. 100, no. 2, pp. 571–572, 1991.
[16]
D. Trevisanuto, G. Picco, R. Golin et al., “Cardiac troponin I in asphyxiated neonates,” Biology of the Neonate, vol. 89, no. 3, pp. 190–193, 2006.
[17]
K. E. Fenton, C. A. Sable, M. J. Bell, K. M. Patel, and J. T. Berger, “Increases in serum levels of troponin I are associated with cardiac dysfunction and disease severity in pediatric patients with septic shock,” Pediatric Critical Care Medicine, vol. 5, no. 6, pp. 533–538, 2004.
[18]
A. EL-Khuffash, P. G. Davis, K. Walsh, and E. J. Molloy, “Cardiac troponin T and N-terminal-pro-B type natriuretic peptide reflect myocardial function in preterm infants,” Journal of Perinatology, vol. 28, no. 7, pp. 482–486, 2008.
[19]
C. Spies, V. Haude, R. Fitzner et al., “Serum cardiac troponin T as a prognostic marker in early sepsis,” Chest, vol. 113, no. 4, pp. 1055–1063, 1998.
[20]
J.-P. Quenot, G. Le Teuff, C. Quantin et al., “Myocardial injury in critically ill patients: relation to increased cardiac troponin I and hospital mortality,” Chest, vol. 128, no. 4, pp. 2758–2764, 2005.