全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Current Issues in Atrial Fibrillation

DOI: 10.5402/2012/376071

Full-Text   Cite this paper   Add to My Lib

Abstract:

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. It places an enormous burden on the patients, caregivers, and the society at large. While the main themes in the care of an AF patient have not changed over the years and continue to focus on stroke prevention, control of the ventricular, rate and rhythm maintenance, there have been a number of new developments in each of these realms. This paper will discuss the “hot” topics in AF in 2012 including new and upcoming medical and invasive management strategies for this condition. 1. Introduction “There is no other serious cardiac disorder which can be so speedily benefited as the well-managed case of auricular fibrillation…the most reliable preparation to use is a fresh and known tincture of digitalis.” This quote from Clinical Disorders of the Heart Beat by Lewis published in 1925 [1] could not be further from the truth in 2012. With the multitude of new therapies introduced and in development to address various clinical implications of this most common sustained rhythm disorder, it is becoming a daunting task to select the right approach to each individual patient. Atrial fibrillation (AF) is responsible for most arrhythmia-related hospital admissions [2] and is the most common cause of ischemic stroke [3]. Furthermore, AF carries a tremendous negative impact on the quality of life and is associated with increased mortality [4]. Its prevalence is rising in our ageing society [5, 6] and so does the expense related to its management [7] and productivity lost among the suffering patients [8]. Decisions that need to be made in each AF patient care include selection of rhythm control or the more conservative control of the ventricular rate and selection of stroke prevention strategy. At each step the clinician needs to decide between medical and invasive solutions. Since AF is frequently associated with other comorbid conditions, these need to be addressed as well. Clinical practice guidelines developed by various professional societies attempt to help physicians select the right therapies for the right AF patients. Unfortunately, the many nuances of AF presentation and available therapies complicate clinical decision-making, guidelines lag behind new clinical developments, and few mechanisms are in place to translate guidelines into standards of care. The purpose of this paper is to discuss the “hot” topics in AF care in 2012. 2. Preventing Embolic Sequelae Prevention of embolic complications is the most important aspect of care for AF patients. These range from transient ischemic

References

[1]  T. Lewis, Clinical Disorders of the Heart Beat, Shaw & Sons, 1925.
[2]  D. Baily, M. H. Lehmann, D. N. Schumacher, et al., “Hospitalization for arrhythmias in the United States: importance of atrial fibrillation,” Journal of the American College of Cardiology, vol. 19, no. 3, supplement, article 41, 1992.
[3]  P. A. Wolf, J. B. Mitchell, C. S. Baker, W. B. Kannel, and R. B. D'Agostino, “Impact of atrial fibrillation on mortality, stroke, and medical costs,” Archives of Internal Medicine, vol. 158, no. 3, pp. 229–234, 1998.
[4]  E. J. Benjamin, P. A. Wolf, R. B. D'Agostino, H. Silbershatz, W. B. Kannel, and D. Levy, “Impact of atrial fibrillation on the risk of death: the Framingham Heart Study,” Circulation, vol. 98, no. 10, pp. 946–952, 1998.
[5]  W. B. Kannel, P. A. Wolf, E. J. Benjamin, and D. Levy, “Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates,” The American Journal of Cardiology, vol. 82, no. 7, supplement 1, pp. 2N–9N, 1998.
[6]  A. S. Go, E. M. Hylek, K. A. Phillips et al., “Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the anticoagulation and risk factors in atrial fibrillation ((ATRIA) study,” Journal of the American Medical Association, vol. 285, no. 18, pp. 2370–2375, 2001.
[7]  S. Stewart, N. F. Murphy, A. Walker, A. McGuire, and J. J. V. McMurray, “Cost of an emerging epidemic: an economic analysis of atrial fibrillation in the UK,” Heart, vol. 90, pp. 286–292, 2004.
[8]  T. Reinhold, C Lindig, S. N. Willich, and B. Bruggenjurgen, “The costs of atrial fibrillation in patients with cardiovascular comorbidities—a longitudinal analysis of German health insurance data,” Europace, vol. 13, no. 9, pp. 1275–1280, 2011.
[9]  R. G. Hart, L. A. Pearce, and M. I. Aguilar, “Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation,” Annals of Internal Medicine, vol. 146, no. 12, pp. 857–867, 2007.
[10]  S. J. Connolly, J. Pogue, R. G. Hart et al., “Effect of clopidogrel added to aspirin in patients with atrial fibrillation,” The New England Journal of Medicine, vol. 360, no. 20, pp. 2066–2078, 2009.
[11]  S. J. Connolly, M. D. Ezekowitz, S. Yusuf et al., “Dabigatran versus warfarin in patients with atrial fibrillation,” The New England Journal of Medicine, vol. 361, no. 12, pp. 1139–1151, 2009.
[12]  D. J. Gladstone, E. Bui, J. Fang et al., “Potentially preventable strokes in high-risk patients with atrial fibrillation who are not adequately anticoagulated,” Stroke, vol. 40, no. 1, pp. 235–240, 2009.
[13]  C. B. Granger, J. H. Alexander, J. J. V. McMurray et al., “Apixaban versus warfarin in patients with atrial fibrillation,” The New England Journal of Medicine, vol. 365, no. 11, pp. 981–992, 2011.
[14]  M. R. Patel, K. W. Mahaffey, J. Garg et al., “Rivaroxaban versus warfarin in nonvalvular atrial fibrillation,” The New England Journal of Medicine, vol. 365, no. 10, pp. 883–891, 2011.
[15]  L. Wallentin, S. Yusuf, M. D. Ezekowitz et al., “Efficacy and safety of dabigatran compared with warfarin at different levels of international normalised ratio control for stroke prevention in atrial fibrillation: an analysis of the RE-LY trial,” The Lancet, vol. 376, no. 9745, pp. 975–983, 2010.
[16]  Johnson & Johnson Pharmaceutical Research & Development, Advisory Committee Briefing Document, 2012.
[17]  E. S. Eerenberg, P. W. Kamphuisen, M. K. Sijpkens, J. C. Meijers, H. R. Buller, and M. Levi, “Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-controlled, crossover study in healthy subjects,” Circulation, vol. 124, no. 14, pp. 1573–1579, 2011.
[18]  J. L. Blackshear and J. A. Odell, “Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation,” The Annals of Thoracic Surgery, vol. 61, no. 2, pp. 755–759, 1996.
[19]  V. Y. Reddy, D. Holmes, S. K. Doshi, P. Neuzil, and S. Kar, “Safety of percutaneous left atrial appendage closure: results from the watchman left atrial appendage system for embolic protection in patients with AF (PROTECT AF) clinical trial and the continued access registry,” Circulation, vol. 123, no. 4, pp. 417–424, 2011.
[20]  D. R. Holmes, V. Y. Reddy, Z. G. Turi et al., “Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial,” The Lancet, vol. 374, no. 9689, pp. 534–542, 2009.
[21]  B. F. Gage, A. D. Waterman, W. Shannon, M. Boechler, M. W. Rich, and M. J. Radford, “Validation of clinical classification schemes for predicting stroke: results from the national registry of atrial fibrillation,” The Journal of the American Medical Association, vol. 285, no. 22, pp. 2864–2870, 2001.
[22]  G. Y. H. Lip, L. Frison, J. L. Halperin, and D. A. Lane, “Identifying patients at high risk for stroke despite anticoagulation: a comparison of contemporary stroke risk stratification schemes in an anticoagulated atrial fibrillation cohort,” Stroke, vol. 41, no. 12, pp. 2731–2738, 2010.
[23]  R. Pisters, D. A. Lane, R. Nieuwlaat, C. B. de Vos, H. J. G. M. Crijns, and G. Y. H. Lip, “A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the euro heart survey,” Chest, vol. 138, no. 5, pp. 1093–1100, 2010.
[24]  J. S. Healey, S. J. Connolly, M. R. Gold et al., “Subclinical atrial fibrillation and the risk of stroke,” The New England Journal of Medicine, vol. 366, no. 2, pp. 120–129, 2012.
[25]  S. J. Connolly, J. Pogue, J. Eikelboom et al., “Benefit of oral anticoagulant over antiplatelet therapy in atrial fibrillation depends on the quality of international normalized ratio control achieved by centers and countries as measured by time in therapeutic range,” Circulation, vol. 118, no. 20, pp. 2029–2037, 2008.
[26]  J. A. Cairns, S. Connolly, S. McMurtry, M. Stephenson, and M. Talajic, “Canadian cardiovascular society atrial fibrillation guidelines 2010: prevention of stroke and systemic thromboembolism in atrial fibrillation and flutter,” Canadian Journal of Cardiology, vol. 27, no. 1, pp. 74–90, 2011.
[27]  A. J. Camm, P. Kirchhof, G. Y. H. Lip et al., “Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European society of cardiology (ESC),” European Heart Journal, vol. 31, no. 19, pp. 2369–2429, 2010.
[28]  M. C. Fang, A. S. Go, Y. Chang et al., “A new risk scheme to predict warfarin-associated hemorrhage: the ATRIA (anticoagulation and risk factors in atrial fibrillation) study,” Journal of the American College of Cardiology, vol. 58, no. 10, pp. 395–401, 2011.
[29]  S. H. Hohnloser, K. H. Kuck, and J. Lilienthal, “Rhythm or rate control in atrial fibrillation—pharmacological intervention in atrial fibrillation (PIAF): a randomised trial,” The Lancet, vol. 356, no. 9244, pp. 1789–1794, 2000.
[30]  J. Carlsson, S. Miketic, J. Windeler et al., “Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation: the strategies of treatment of atrial fibrillation (STAF) study,” Journal of the American College of Cardiology, vol. 41, no. 10, pp. 1690–1696, 2003.
[31]  I. C. Van Gelder, V. E. Hagens, H. A. Bosker et al., “A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation,” The New England Journal of Medicine, vol. 347, no. 23, pp. 1834–1840, 2002.
[32]  D. G. Wyse, A. L. Waldo, J. P. DiMarco et al., “A comparison of rate control and rhythm control in patients with atrial fibrillation,” The New England Journal of Medicine, vol. 347, no. 23, pp. 1825–1833, 2002.
[33]  D. Roy, M. Talajic, S. Nattel et al., “Rhythm control versus rate control for atrial fibrillation and heart failure,” The New England Journal of Medicine, vol. 358, no. 25, pp. 2667–2677, 2008.
[34]  V. E. Hagens, A. V. Ranchor, E. Van Sonderen et al., “Effect of rate or rhythm control on quality of life in persistent atrial fibrillation: results from the rate control versus electrical cardioversion (RACE) study,” Journal of the American College of Cardiology, vol. 43, no. 2, pp. 241–247, 2004.
[35]  P. Dorian, M. Paquette, D. Newman et al., “Quality of life improves with treatment in the Canadian trial of atrial fibrillation,” American Heart Journal, vol. 143, no. 6, pp. 984–990, 2002.
[36]  M. K. Chung, L. Shemanski, D. G. Sherman et al., “Functional status in rate- versus rhythm-control strategies for atrial fibrillation: results of the atrial fibrillation follow-up investigation of rhythm management (AFFIRM) functional status substudy,” Journal of the American College of Cardiology, vol. 46, no. 10, pp. 1891–1899, 2005.
[37]  S. D. Corley, A. E. Epstein, J. P. DiMarco et al., “Relationships between sinus rhythm, treatment, and survival in the atrial fibrillation follow-up investigation of rhythm management (AFFIRM) study,” Circulation, vol. 109, no. 12, pp. 1509–1513, 2004.
[38]  L. Testa, G. G. L. Biondi-Zoccai, A. D. Russo, F. Bellocci, F. Andreotti, and F. Crea, “Rate-control vs. rhythm-control in patients with atrial fibrillation: a meta-analysis,” European Heart Journal, vol. 26, no. 19, pp. 2000–2006, 2005.
[39]  S. de Denus, C. A. Sanoski, J. Carlsson, G. Opolski, and S. A. Spinler, “Rate vs rhythm control in patients with atrial fibrillation: a meta-analysis,” Archives of Internal Medicine, vol. 165, no. 3, pp. 258–262, 2005.
[40]  A. L. Waldo, A. J. Camm, H. deRuyter et al., “Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD investigators. Survival with oral d-sotalol,” The Lancet, vol. 348, no. 9019, pp. 7–12, 1996.
[41]  The Cardiac Arrhythmia Suppression Trial (CAST) Investigators, “Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction,” The New England Journal of Medicine, vol. 321, no. 6, pp. 406–412, 1989.
[42]  L. K?ber, C. Torp-Pedersen, J. J. V. McMurray et al., “Increased mortality after dronedarone therapy for severe heart failure,” The New England Journal of Medicine, vol. 358, no. 25, pp. 2678–2687, 2008.
[43]  S. J. Connolly, A. J. Camm, J. L. Halperin et al., “Dronedarone in high-risk permanent atrial fibrillation,” The New England Journal of Medicine, vol. 365, no. 24, pp. 2268–2276, 2011.
[44]  P. Zimetbaum, “Amiodarone for atrial fibrillation,” The New England Journal of Medicine, vol. 356, no. 9, pp. 935–941, 2007.
[45]  S. Kathofer, D. Thomas, and C. A. Karle, “The novel antiarrhythmic drug dronedarone: comparison with amiodarone,” Cardiovascular Drug Reviews, vol. 23, no. 3, pp. 217–230, 2005.
[46]  J. M. Davy, M. Herold, C. Hoglund et al., “Dronedarone for the control of ventricular rate in permanent atrial fibrillation: the efficacy and safety of dRonedArone for The cOntrol of ventricular rate during atrial fibrillation (ERATO) study,” American Heart Journal, vol. 156, no. 3, pp. 527.e1–527.e9, 2008.
[47]  S. H. Hohnloser, H. J. G. M. Crijns, M. van Eickels et al., “Effect of dronedarone on cardiovascular events in atrial fibrillation,” The New England Journal of Medicine, vol. 360, no. 7, pp. 668–678, 2009.
[48]  C. Torp-Pedersen, H. J. Crijns, C. Gaudin, R. L. Page, S. J. Connolly, and S. H. Hohnloser, “Impact of dronedarone on hospitalization burden in patients with atrial fibrillation: results from the ATHENA study,” Europace, vol. 13, no. 8, pp. 1118–1126, 2011.
[49]  A. M. Gillis, A. Verma, M. Talajic, S. Nattel, and P. Dorian, “Canadian cardiovascular society atrial fibrillation guidelines 2010: rate and rhythm management,” Canadian Journal of Cardiology, vol. 27, no. 1, pp. 47–59, 2011.
[50]  J. P. Piccini, V. Hasselblad, E. D. Peterson, J. B. Washam, R. M. Califf, and D. F. Kong, “Comparative efficacy of dronedarone and amiodarone for the maintenance of sinus rhythm in patients with atrial fibrillation,” Journal of the American College of Cardiology, vol. 54, no. 12, pp. 1089–1095, 2009.
[51]  J. Y. Le Heuzey, G. M. De Ferrari, D. Radzik, M. Santini, J. Zhu, and J. M. Davy, “A short-term, randomized, double-blind, parallel-group study to evaluate the efficacy and safety of dronedarone versus amiodarone in patients with persistent atrial fibrillation: the dionysos study,” Journal of Cardiovascular Electrophysiology, vol. 21, no. 6, pp. 597–605, 2010.
[52]  FDA, “FDA Drug Safety Communication: Multaq (dronedarone) and increased risk of death and serious cardiovascular adverse events,” 2011.
[53]  FDA, “FDA Drug Safety Communication: severe liver injury associated with the use of dronedarone (marketed as Multaq),” 2011.
[54]  D. Roy, C. M. Pratt, C. Torp-Pedersen et al., “Vernakalant hydrochloride for rapid conversion of atrial fibrillation: a phase 3, randomized, placebo-controlled trial,” Circulation, vol. 117, no. 12, pp. 1518–1525, 2008.
[55]  P. R. Kowey, P. Dorian, L. B. Mitchell et al., “Vernakalant hydrochloride for the rapid conversion of atrial fibrillation after cardiac surgery a randomized, double-blind, placebo-controlled trial,” Circulation, vol. 2, no. 6, pp. 652–659, 2009.
[56]  A. J. Camm, A. Capucci, S. H. Hohnloser et al., “A randomized active-controlled study comparing the efficacy and safety of vernakalant to amiodarone in recent-onset atrial fibrillation,” Journal of the American College of Cardiology, vol. 57, no. 3, pp. 313–321, 2011.
[57]  B. M. Scirica, D. A. Morrow, H. Hod et al., “Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non-ST-segment-elevation acute coronary syndrome: results from the metabolic efficiency with ranolazine for less ischemia in non-ST-elevation acute coronary syndrome-thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial,” Circulation, vol. 116, no. 15, pp. 1647–1652, 2007.
[58]  A. Burashnikov, S. Sicouri, J. M. Di Diego, L. Belardinelli, and C. Antzelevitch, “Synergistic effect of the combination of ranolazine and dronedarone to suppress atrial fibrillation,” Journal of the American College of Cardiology, vol. 56, no. 15, pp. 1216–1224, 2010.
[59]  S. Sicouri, A. Burashnikov, L. Belardinelli, and C. Antzelevitch, “Synergistic electrophysiologic and antiarrhythmic effects of the combination of ranolazine and chronic amiodarone in canine atria,” Circulation, vol. 3, no. 1, pp. 88–95, 2010.
[60]  M. A. Wood, C. Brown-Mahoney, G. N. Kay, and K. A. Ellenbogen, “Clinical outcomes after ablation and pacing therapy for atrial fibrillation: a meta-analysis,” Circulation, vol. 101, no. 10, pp. 1138–1144, 2000.
[61]  R. N. Doshi, E. G. Daoud, C. Fellows et al., “Left ventricular-based cardiac stimulation post AV nodal ablation evaluation (The PAVE study),” Journal of Cardiovascular Electrophysiology, vol. 16, no. 11, pp. 1160–1165, 2005.
[62]  I. C. Van Gelder, H. F. Groenveld, H. J. G. M. Crijns et al., “Lenient versus strict rate control in patients with atrial fibrillation,” The New England Journal of Medicine, vol. 362, no. 15, pp. 1363–1373, 2010.
[63]  C. Ozcan, A. Jahangir, P. A. Friedman et al., “Sudden death after radiofrequency ablation of the atrioventricular node in patients with atrial fibrillation,” Journal of the American College of Cardiology, vol. 40, no. 1, pp. 105–110, 2002.
[64]  M. Ha?ssaguerre, P. Ja?s, D. C. Shah et al., “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” The New England Journal of Medicine, vol. 339, no. 10, pp. 659–666, 1998.
[65]  Y. Khaykin, R. Oosthuizen, L. Zarnett et al., “Clinical predictors of arrhythmia recurrences following pulmonary vein antrum isolation for atrial fibrillation: predicting arrhythmia recurrence post-PVAI,” Journal of Cardiovascular Electrophysiology, vol. 22, no. 11, pp. 1206–1214, 2011.
[66]  A. Verma, J. Champagne, J. Sapp et al., “Discerning the incidence of symptomatic and asymptomatic episodes of atrial fibrillation pre- and post- radiofrequency ablation (discern af): a prospective, multicenter study,” in Proceedings of the 32nd Annual Scientific Sessions of the Heart Rhythm Society, 2011.
[67]  C. Pappone, S. Rosanio, G. Augello et al., “Mortality, morbidity, and quality of life after circumferential pulmonary vein ablation for atrial fibrillation: outcomes from a controlled nonrandomized long-term study,” Journal of the American College of Cardiology, vol. 42, no. 2, pp. 185–197, 2003.
[68]  R. J. Hunter, J. McCready, I. Diab et al., “Maintenance of sinus rhythm with an ablation strategy in patients with atrial fibrillation is associated with a lower risk of stroke and death,” Heart, vol. 98, no. 1, pp. 48–53, 2012.
[69]  O. M. Wazni, N. F. Marrouche, D. O. Martin et al., “Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of symptomatic atrial fibrillation: a randomized trial,” Journal of the American Medical Association, vol. 293, no. 21, pp. 2634–2640, 2005.
[70]  M. S. Chen, N. F. Marrouche, Y. Khaykin et al., “Pulmonary vein isolation for the treatment of atrial fibrillation in patients with impaired systolic function,” Journal of the American College of Cardiology, vol. 43, no. 6, pp. 1004–1009, 2004.
[71]  L. F. Hsu, P. Ja?s, P. Sanders et al., “Catheter ablation for atrial fibrillation in congestive heart failure,” The New England Journal of Medicine, vol. 351, no. 23, pp. 2373–2383, 2004.
[72]  M. J. Earley, D. J. R. Abrams, A. D. Staniforth, S. C. Sporton, and R. J. Schilling, “Catheter ablation of permanent atrial fibrillation: medium term results,” Heart, vol. 92, no. 2, pp. 233–238, 2006.
[73]  H. Oral, C. Pappone, A. Chugh et al., “Circumferential pulmonary-vein ablation for chronic atrial fibrillation,” The New England Journal of Medicine, vol. 354, no. 9, pp. 934–941, 2006.
[74]  K. Nademanee, J. McKenzie, E. Kosar et al., “A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate,” Journal of the American College of Cardiology, vol. 43, no. 11, pp. 2044–2053, 2004.
[75]  H. Oral, A. Chugh, E. Good et al., “Randomized evaluation of right atrial ablation after left atrial ablation of complex fractionated atrial electrograms for long-lasting persistent atrial fibrillation,” Circulation, vol. 1, no. 1, pp. 6–13, 2008.
[76]  A. Verma, R. Mantovan, L. Macle et al., “Substrate and trigger ablation for reduction of atrial fibrillation (STAR AF): a randomized, multicentre, international trial,” European Heart Journal, vol. 31, no. 11, pp. 1344–1356, 2010.
[77]  M. H. Kong, J. P. Piccini, and T. D. Bahnson, “Efficacy of adjunctive ablation of complex fractionated atrial electrograms and pulmonary vein isolation for the treatment of atrial fibrillation: a meta-analysis of randomized controlled trials,” Europace, vol. 13, no. 2, pp. 193–204, 2011.
[78]  R. M. Hayward, G. A. Upadhyay, T. Mela et al., “Pulmonary vein isolation with complex fractionated atrial electrogram ablation for paroxysmal and nonparoxysmal atrial fibrillation: a meta-analysis,” Heart Rhythm, vol. 8, no. 7, pp. 994–1000, 2011.
[79]  J. Zhou, B. J. Scherlag, J. Edwards, W. M. Jackman, R. Lazzara, and S. S. Po, “Gradients of atrial refractoriness and inducibility of atrial fibrillation due to stimulation of ganglionated plexi,” Journal of Cardiovascular Electrophysiology, vol. 18, no. 1, pp. 83–90, 2007.
[80]  K. Lemola, D. Chartier, Y. H. Yeh et al., “Pulmonary vein region ablation in experimental vagal atrial fibrillation : role of pulmonary veins versus autonomic ganglia,” Circulation, vol. 117, no. 4, pp. 470–477, 2008.
[81]  H. Nakagawa, B. J. Scherlag, E. Patterson, A. Ikeda, D. Lockwood, and W. M. Jackman, “Pathophysiologic basis of autonomic ganglionated plexus ablation in patients with atrial fibrillation,” Heart Rhythm, vol. 6, no. 12, pp. S26–S34, 2009.
[82]  L. Calò, F. Lamberti, M. L. Loricchio et al., “Left atrial ablation versus biatrial ablation for persistent and permanent atrial fibrillation. A prospective and randomized study,” Journal of the American College of Cardiology, vol. 47, no. 12, pp. 2504–2512, 2006.
[83]  M. Ha?ssaguerre, P. Sanders, M. Hocini et al., “Catheter ablation of long-lasting persistent atrial fibrillation: critical structures for termination,” Journal of Cardiovascular Electrophysiology, vol. 16, no. 11, pp. 1125–1137, 2005.
[84]  R. Cappato, H. Calkins, S. A. Chen et al., “Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation,” Circulation, vol. 3, no. 1, pp. 32–38, 2010.
[85]  R. U. Shah, J. V. Freeman, D. Shilane, P. J. Wang, A. S. Go, and M. A. Hlatky, “Procedural complications, rehospitalizations, and repeat procedures after catheter ablation for atrial fibrillation,” Journal of the American College of Cardiology, vol. 59, no. 2, pp. 143–149, 2012.
[86]  A. Bittner, G. M?nnig, S. Zellerhoff et al., “Randomized study comparing duty-cycled bipolar and unipolar radiofrequency with point-by-point ablation in pulmonary vein isolation,” Heart Rhythm, vol. 8, no. 9, pp. 1383–1390, 2011.
[87]  A. Bulava, J. Hani?, D. Sitek et al., “Catheter ablation for paroxysmal atrial fibrillation: a randomized comparison between multielectrode catheter and point-by-point ablation,” Pacing and Clinical Electrophysiology, vol. 33, no. 9, pp. 1039–1046, 2010.
[88]  C. Tivig, L. Dang, H. P. Brunner-La Rocca, S. ?zcan, F. Duru, and C. Scharf, “Duty-cycled unipolar/bipolar versus conventional radiofrequency ablation in paroxysmal and persistent atrial fibrillation,” International Journal of Cardiology, vol. 157, no. 2, pp. 185–191, 2012.
[89]  C. Herrera Siklódy, T. Deneke, M. Hocini et al., “Incidence of asymptomatic intracranial embolic events after pulmonary vein isolation: comparison of different atrial fibrillation ablation technologies in a multicenter study,” Journal of the American College of Cardiology, vol. 58, no. 7, pp. 681–688, 2011.
[90]  T. Deneke, D. I. Shin, O. Balta et al., “Postablation asymptomatic cerebral lesions: long-term follow-up using magnetic resonance imaging,” Heart Rhythm, vol. 8, no. 11, pp. 1705–1711, 2011.
[91]  F. Gaita, J. F. Leclercq, B. Schumacher et al., “Incidence of silent cerebral thromboembolic lesions after atrial fibrillation ablation may change according to technology used: comparison of irrigated radiofrequency, multipolar nonirrigated catheter and cryoballoon,” Journal of Cardiovascular Electrophysiology, vol. 22, no. 9, pp. 961–968, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133