Emotionally charged events are associated with an increased risk of sudden cardiac death (SCD). In this study we assessed RR and QT variability index (QTVI) at baseline during anger recall test (AR). We calculated QTVI from a 5-min ECG recording and from a 10-beats segment around the presumed maximum sympathetic activation in thirty post-myocardial infarction patients under β-blocker therapy and 10 controls underwent. In all groups, the low-frequency component of RR and SBP increased during AR. In all recordings, the QTVI calculated on a 5-min ECG recording and the Q T V I 1 0 b e a t s were higher in patients than in controls (P < 0.05). The QTVI during AR remained unchanged from baseline within each group. Conversely, during AR, the Q T V I 1 0 b e a t s in controls diminished significantly (P < 0.05) from baseline whereas in patients remained unchanged. The inability to buffer an acute stress-induced increase in sympathetic activity could explain why events charged with acute stress are associated with an increased risk of ventricular arrhythmias in this setting of patients and support the role of cognitive behavior stress management strategies. 1. Introduction Sudden, unexpected events with a high emotional content [1, 2], such as, earthquakes [3–6], terrorist attacks [6–9], sports matches [10, 11], sexual activities [12, 13], or episodes of anger [14, 15] can lead to malignant ventricular arrhythmias and hence to sudden cardiac death (SCD), mainly in patients with structural heart disease. The body reacts to these stressful circumstances by increasing sympathetic nervous activity and reducing vagal control of heart rate and blood pressure [16], such imbalance known to be a trigger for malignant ventricular arrhythmias [1, 2, 17]. Several Authors suggest that stressful events, such as, those experimentally induced through an anger recall test (AR), might lead also to a significant worsening in myocardial repolarization dispersion, another phenomenon thought to be a potential striking of lethal arrhythmias [18–20]. Moreover, evidence about a possible relationship between autonomic nervous system (ANS) activity and myocardial repolarization dispersion comes from a recent experimental study showing that the QT variability index (QTVI), marker of temporal dispersion in myocardial repolarization [21–24], tends to increase in a manner directly proportional to the increased sympathetic nerve activity [25]. However, stress-induced events typically cause nonuniform, short-lasting changes in ANS activity and, most likely, in myocardial repolarization
References
[1]
R. C. Ziegelstein, “Acute emotional stress and cardiac arrhythmias,” Journal of the American Medical Association, vol. 298, no. 3, pp. 324–329, 2007.
[2]
J. E. Dimsdale, “Psychological stress and cardiovascular disease,” Journal of the American College of Cardiology, vol. 51, no. 13, pp. 1237–1246, 2008.
[3]
J. Leor, W. K. Poole, and R. A. Kloner, “Sudden cardiac death triggered by an earthquake,” The New England Journal of Medicine, vol. 334, no. 7, pp. 413–419, 1996.
[4]
R. A. Kloner, J. Leor, W. K. Poole, and R. Perritt, “Population-based analysis of the effect of the Northridge Earthquake on cardiac death in Los Angeles County, California,” Journal of the American College of Cardiology, vol. 30, no. 5, pp. 1174–1180, 1997.
[5]
K. Kario and T. Ohashi, “Increased coronary heart disease mortality after the Hanshin-Awaji earthquake among the older community on Awaji Island,” Journal of the American Geriatrics Society, vol. 45, no. 5, pp. 610–613, 1997.
[6]
J. S. Chi, W. K. Poole, S. C. Kandefer, and R. A. Kloner, “Cardiovascular mortality in New York City after September 11, 2001,” American Journal of Cardiology, vol. 92, no. 7, pp. 857–861, 2003.
[7]
J. S. Chi, M. T. Speakman, W. K. Poole, S. C. Kandefer, and R. A. Kloner, “Hospital admissions for cardiac events in New York City after September 11, 2001,” American Journal of Cardiology, vol. 92, no. 1, pp. 61–63, 2003.
[8]
J. S. Steinberg, A. Arshad, M. Kowalski et al., “An Increased incidence of life-threatening ventricular arrhythmias in implantable defibrillator patients after the World Trade Center attack,” Journal of the American College of Cardiology, vol. 44, no. 6, pp. 1261–1264, 2004.
[9]
O. L. Shedd, S. F. Sears Jr., J. L. Harvill et al., “The World Trade Center attack: increased frequency of defibrillator shocks for ventricular arrhythmias in patients living remotely from New York City,” Journal of the American College of Cardiology, vol. 44, no. 6, pp. 1265–1267, 2004.
[10]
D. Carroll, S. Ebrahim, K. Tilling, J. Macleod, and G. Davey Smith, “Admissions for myocardial infarction and World Cup football: database survey,” British Medical Journal, vol. 325, no. 7378, pp. 1439–1442, 2002.
[11]
U. Wilbert-Lampen, D. Leistner, S. Greven et al., “Cardiovascular events during World Cup Soccer,” The New England Journal of Medicine, vol. 358, no. 5, pp. 475–483, 2008.
[12]
J. E. Muller, M. A. Mittleman, M. Maclure, J. B. Sherwood, and G. H. Toller, “Triggering myocardial infarction by sexual activity: low absolute risk and prevention by regular physical exertion,” Journal of the American Medical Association, vol. 275, no. 18, pp. 1405–1409, 1996.
[13]
J. M?ller, A. Ahlbom, J. Hulting et al., “Sexual activity as a trigger of myocardial infarction. A case-crossover analysis in the Stockholm Heart Epidemiology Programme (SHEEP),” Heart, vol. 86, no. 4, pp. 387–390, 2001.
[14]
M. A. Mittleman, M. Maclure, J. B. Sherwood et al., “Triggering of acute myocardial infarction onset by episodes of anger,” Circulation, vol. 92, no. 7, pp. 1720–1725, 1995.
[15]
J. M?ller, J. Hallqvist, F. Diderichsen, T. Theorell, C. Reuterwall, and A. Ahlbom, “Do episodes of anger trigger myocardial infarction? A case-crossover analysis in the Stockholm Heart Epidemiology Program (SHEEP),” Psychosomatic Medicine, vol. 61, no. 6, pp. 842–849, 1999.
[16]
C. W. Y. Appels and J. H. Bolk, “Sudden death after emotional stress: a case history and literature review,” European Journal of Internal Medicine, vol. 20, no. 4, pp. 359–361, 2009.
[17]
S. N. Willich, M. Maclure, M. Mittleman, H. R. Arntz, and J. E. Muller, “Sudden cardiac death: support for a role of triggering in causation,” Circulation, vol. 87, no. 5, pp. 1442–1450, 1993.
[18]
R. Lampert, V. Shusterman, M. M. Burg et al., “Effects of psychologic stress on repolarization and relationship to autonomic and hemodynamic factors,” Journal of Cardiovascular Electrophysiology, vol. 16, no. 4, pp. 372–377, 2005.
[19]
W. J. Kop, D. S. Krantz, B. D. Nearing et al., “Effects of acute mental stress and exercise on T-wave alternans in patients with implantable cardioverter defibrillators and controls,” Circulation, vol. 109, no. 15, pp. 1864–1869, 2004.
[20]
R. Lampert, V. Shusterman, M. Burg et al., “Anger-induced T-wave alternans predicts future ventricular arrhythmias in patients with implantable cardioverter-defibrillators,” Journal of the American College of Cardiology, vol. 53, no. 9, pp. 774–778, 2009.
[21]
R. D. Berger, E. K. Kasper, K. L. Baughman, E. Marban, H. Calkins, and G. F. Tomaselli, “Beat-to-beat QT interval variability: novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy,” Circulation, vol. 96, no. 5, pp. 1557–1565, 1997.
[22]
W. L. Atiga, H. Calkins, J. H. Lawrence, G. F. Tomaselli, J. M. Smith, and R. D. Berger, “Beat-to-beat repolarization lability identifies patients at risk for sudden cardiac death,” Journal of Cardiovascular Electrophysiology, vol. 9, no. 9, pp. 899–908, 1998.
[23]
M. C. Haigney, W. Zareba, P. J. Gentlesk et al., “QT interval variability and spontaneous ventricular tachycardia or fibrillation in the Multicenter Automatic Defibrillator Implantation Trial (MADUT) II patients,” Journal of the American College of Cardiology, vol. 44, no. 7, pp. 1481–1487, 2004.
[24]
G. Piccirillo, D. Magrì, S. Matera et al., “QT variability strongly predicts sudden cardiac death in asymptomatic subjects with mild or moderate left ventricular systolic dysfunction: a prospective study,” European Heart Journal, vol. 28, no. 11, pp. 1344–1350, 2007.
[25]
G. Piccirillo, D. Magrì, M. Ogawa et al., “Autonomic nervous system activity measured directly and QT interval variability in normal and pacing-induced tachycardia heart failure dogs,” Journal of the American College of Cardiology, vol. 54, no. 9, pp. 840–850, 2009.
[26]
M. Ogawa, S. Zhou, A. Y. Tan et al., “Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing-induced congestive heart failure,” Journal of the American College of Cardiology, vol. 50, no. 4, pp. 335–343, 2007.
[27]
G. Piccirillo, D. Magrì, S. Matera, and V. Marigliano, “Emotions that afflict the heart: influence of the autonomic nervous system on temporal dispersion of myocardial repolarization,” Journal of Cardiovascular Electrophysiology, vol. 19, no. 2, pp. 185–187, 2008.
[28]
G. Piccirillo, P. Rossi, and D. Magrì, “The QT variability index: a multidimensional approach to understanding cardiovascular disease,” Cardiology, vol. 118, no. 1, pp. 42–44, 2011.
[29]
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, “Heart rate variability. Standard of measurements, physiological interpretation and clinical use,” Circulation, vol. 93, pp. 1043–1065, 1996.
[30]
G. Piccirillo, M. Nocco, A. Moisè et al., “Influence of vitamin C on baroreflex sensitivity in chronic heart failure,” Hypertension, vol. 41, no. 6, pp. 1240–1245, 2003.
[31]
G. Piccirillo, M. Cacciafesta, E. Viola et al., “Influence of aging on cardiac baroreflex sensitivity determined non-invasively by power spectral analysis,” Clinical Science, vol. 100, no. 3, pp. 267–274, 2001.
[32]
G. Piccirillo, D. Magrì, C. Naso et al., “Factors influencing heart rate variability power spectral analysis during controlled breathing in patients with chronic heart failure or hypertension and in healthy normotensive subjects,” Clinical Science, vol. 107, no. 2, pp. 183–190, 2004.
[33]
D. Magrì, G. Piccirillo, and E. Bucci, “Increased temporal dispersion of myocardial repolarization in myotonic dystrophy type 1. Beyond the cardiac conduction system,” International Journal of Cardiology, vol. 156, pp. 259–264, 2012.
[34]
D. Magrì, S. Sciomer, F. Fedele et al., “Increased QT variability in young asymptomatic patients with β-thalassemia major,” European Journal of Haematology, vol. 79, no. 4, pp. 322–329, 2007.
[35]
G. Piccirillo, M. Ogawa, J. Song et al., “Power spectral analysis of heart rate variability and autonomic nervous system activity measured directly in healthy dogs and dogs with tachycardia-induced heart failure,” Heart Rhythm, vol. 6, no. 4, pp. 546–552, 2009.
[36]
S. Guzzetti, M. T. La Rovere, G. D. Pinna et al., “Different spectral components of 24h heart rate variability are related to different modes of death in chronic heart failure,” European Heart Journal, vol. 26, no. 4, pp. 357–362, 2005.
[37]
M. T. La Rovere, G. D. Pinna, R. Maestri et al., “Short-term heart rate variability strongly predicts sudden cadiac death in chronic heart failure patients,” Circulation, vol. 107, no. 4, pp. 565–570, 2003.
[38]
G. Piccirillo, D. Magrì, S. Di Carlo et al., “Influence of cardiac-resynchronization therapy on heart rate and blood pressure variability: 1-year follow-up,” European Journal of Heart Failure, vol. 8, no. 7, pp. 716–722, 2006.
[39]
G. Piccirillo, R. L. Luparini, V. Celli et al., “Effects of carvedilol on heart rate and blood pressure variability in subjects with chronic heart failure,” American Journal of Cardiology, vol. 86, no. 12, pp. 1392–1395, 2000.
[40]
G. Piccirillo, R. Quaglione, M. Nocco et al., “Effects of long-term beta-blocker (metoprolol or carvedilol) therapy on QT variability in subjects with chronic heart failure secondary to ischemic cardiomyopathy,” American Journal of Cardiology, vol. 90, no. 10, pp. 1113–1117, 2002.
[41]
G. Piccirillo, M. Magnanti, S. Matera et al., “Age and QT variability index during free breathing, controlled breathing and tilt in patients with chronic heart failure and healthy control subjects,” Translational Research, vol. 148, no. 2, pp. 72–78, 2006.
[42]
Y. Tsuji, S. Zicha, X. Y. Qi, I. Kodama, and S. Nattel, “Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia: discrete arrhythmogenic consequences related to differential delayed-rectifier changes,” Circulation, vol. 113, no. 3, pp. 345–355, 2006.
[43]
R. Lampert, T. Joska, M. M. Burg, W. P. Batsford, C. A. McPherson, and D. Jain, “Emotional and physical precipitants of ventricular arrhythmia,” Circulation, vol. 106, no. 14, pp. 1800–1805, 2002.
[44]
C. S. Kohn, R. J. Petrucci, C. Baessler, D. M. Soto, and C. Movsowitz, “The effect of psychological intervention on patients' long-term adjustment to the ICD: a prospective study,” Pacing and Clinical Electrophysiology, vol. 23, no. 4, pp. 450–456, 2000.
[45]
S. S. Pedersen, K. C. van den Broek, and S. F. Sears, “Psychological intervention following implantation of an implantable defibrillator: a review and future recommendations,” Pacing and Clinical Electrophysiology, vol. 30, no. 12, pp. 1546–1554, 2007.