全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Primary Prevention of Heart Failure

DOI: 10.5402/2012/982417

Full-Text   Cite this paper   Add to My Lib

Abstract:

Most heart failure research and quality improvement efforts are targeted at treatment and secondary prevention of patients with manifest heart failure. This is distinct from coronary disease where primary prevention has been a focus for over three decades. Given the current importance and the projected worsening of heart failure epidemiology, a more focused effort on prevention is urgently needed. 1. Epidemiology It is estimated that over 5.5 million subjects in the United States have heart failure and more than 650,000 are diagnosed for the first time each year [1]. Patients with impaired versus preserved left ventricular systolic function related heart failure each comprises about half of the overall burden of heart failure in the community [2, 3]. The proportion of heart failure with preserved ejection fraction increases with age [2]. Heart failure is the primary reason for 12–15 million office visits and 6.5 million hospital days annually. Recurrent hospitalization is a major issue with the annual number of hospitalizations now exceeding over 1 million for heart failure. These patients are particularly prone to rehospitalizations with readmission rates near 50% within six months of discharge. It has been estimated that the total direct and indirect cost of heart failure in the United States exceeds $ 30 billion [1]. The outcomes of these patients continue to remain suboptimal with only approximately 50% of the individuals surviving past five years after diagnosis [4]. Quality of life remains poor. Some improvement have been shown in individuals with systolic dysfunction, with no major advances in therapy for either patients with heart failure and preserved ejection fraction or those who are hospitalized for heart failure. Heart failure prevalence is rising and this trend will worsen. This is attributed to the increasing elderly population and the increasing prevalence of cardiovascular risk factors like diabetes and obesity. The aging of the 78 million baby boomers will result in 1 in 5 Americans to be over the age of 65 years by 2050. Heart failure incidence and prevalence are the highest amongst the elderly, and 80% of patients hospitalized with heart failure are over 65 years old. Thus the increasing age of the population is expected to significantly worsen the current heart failure epidemic. 2. Risk Factors Risk factors for heart failure range from lifestyle factors to comorbidities, medications, laboratory, and imaging characteristics to novel biomarkers and genomic markers [5]. Heart failure risk increases with age and male gender is

References

[1]  D. Lloyd-Jones, R. Adams, M. Carnethon et al., “Heart disease and stroke statistics—2009 update: a report from the American heart association statistics committee and stroke statistics subcommittee,” Circulation, vol. 119, no. 3, pp. e21–e181, 2009.
[2]  T. E. Owan and M. M. Redfield, “Epidemiology of diastolic heart failure,” Progress in Cardiovascular Diseases, vol. 47, no. 5, pp. 320–332, 2005.
[3]  R. S. Vasan, E. J. Benjamin, and D. Levy, “Prevalence, clinical features and prognosis of diastolic heart failure: an epidemiologic perspective,” Journal of the American College of Cardiology, vol. 26, no. 7, pp. 1565–1574, 1995.
[4]  A. Kalogeropoulos, V. Georgiopoulou, S. B. Kritchevsky et al., “Epidemiology of incident heart failure in a contemporary elderly cohort the health, aging, and body composition study,” Archives of Internal Medicine, vol. 169, no. 7, pp. 708–715, 2009.
[5]  J. Butler, “Risk factors for heart failure,” in Congestive Heart Failure, J. D. Hosenpud and B. H. Greenberg, Eds., p. 263, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 3rd edition, 2007.
[6]  J. He, L. G. Ogden, L. A. Bazzano, S. Vupputuri, C. Loria, and P. K. Whelton, “Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study,” Archives of Internal Medicine, vol. 161, no. 7, pp. 996–1002, 2001.
[7]  G. C. Fonarow, “The acute decompensated heart failure national registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure,” Reviews in Cardiovascular Medicine, vol. 4, supplement 7, pp. S21–S30, 2003.
[8]  A. W. Haider, M. G. Larson, S. S. Franklin, and D. Levy, “Systolic blood pressure, diastolic blood pressure, and pulse pressure as predictors of risk for congestive heart failure in the Framingham heart study,” Annals of Internal Medicine, vol. 138, no. 1, pp. 10–16, 2003.
[9]  S. Kenchaiah, J. C. Evans, D. Levy et al., “Obesity and the risk of heart failure,” The New England Journal of Medicine, vol. 347, no. 5, pp. 305–313, 2002.
[10]  L. Djoussé and J. M. Gaziano, “Alcohol consumption and heart failure: a systematic review,” Current Atherosclerosis Reports, vol. 10, no. 2, pp. 117–120, 2008.
[11]  J. L. Abramson, S. A. Williams, H. M. Krumholz, and V. Vaccarino, “Moderate alcohol consumption and risk of heart failure among older persons,” The Journal of the American Medical Association, vol. 285, no. 15, pp. 1971–1977, 2001.
[12]  L. Djoussé and J. M. Gaziano, “Alcohol consumption and risk of heart failure in the Physicians' health study I,” Circulation, vol. 115, no. 1, pp. 34–39, 2007.
[13]  T. Horio, J. Miyazato, K. Kamide, S. Takiuchi, and Y. Kawano, “Influence of low high-density lipoprotein cholesterol on left ventricular hypertrophy and diastolic function in essential hypertension,” American Journal of Hypertension, vol. 16, no. 11 I, pp. 938–944, 2003.
[14]  J. Sundstr?m, L. Lind, B. Vessby, B. Andrén, A. Aro, and H. O. Lithell, “Dyslipidemia and an unfavorable fatty acid profile predict left ventricular hypertrophy 20 years later,” Circulation, vol. 103, no. 6, pp. 836–841, 2001.
[15]  K. K. L. Ho, J. L. Pinsky, W. B. Kannel, and D. Levy, “The epidemiology of heart failure: the Framingham study,” Journal of the American College of Cardiology, vol. 22, no. 4, pp. 6A–13A, 1993.
[16]  R. Dhingra, H. D. Sesso, S. Kenchaiah, and J. M. Gaziano, “Differential effects of lipids on the risk of heart failure and coronary heart disease: the Physicians' health study,” American Heart Journal, vol. 155, no. 5, pp. 869–875, 2008.
[17]  J. Butler, A. Kalogeropoulos, V. Georgiopoulou et al., “Serum resistin concentrations and risk of new onset heart failure in older persons: the health, aging, and body composition (Health ABC) study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 7, pp. 1144–1149, 2009.
[18]  L. C. van Vark, I. Kardys, G. S. Bleumink et al., “Lipoprotein-associated phospholipase A2 activity and risk of heart failure: the Rotterdam study,” European Heart Journal, vol. 27, no. 19, pp. 2346–2352, 2006.
[19]  W. H. W. Tang, R. Katz, M. L. Brennan et al., “Usefulness of myeloperoxidase levels in healthy elderly subjects to predict risk of developing heart failure,” American Journal of Cardiology, vol. 103, no. 9, pp. 1269–1274, 2009.
[20]  P. D. Home, S. J. Pocock, H. Beck-Nielsen et al., “Rosiglitazone evaluated for cardiovascular outcomes—an interim analysis,” The New England Journal of Medicine, vol. 357, no. 1, pp. 28–38, 2007.
[21]  J. Hippisley-Cox, C. Coupland, Y. Vinogradova, J. Robson, M. May, and P. Brindle, “Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study,” British Medical Journal, vol. 335, no. 7611, pp. 136–141, 2007.
[22]  E. O'Meara, T. Clayton, M. B. McEntegart et al., “Sex differences in clinical characteristics and prognosis in a broad spectrum of patients with heart failure—results of the Candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) program,” Circulation, vol. 115, no. 24, pp. 3111–3120, 2007.
[23]  J. H. Ware, “The limitations of risk factors as prognostic tools,” The New England Journal of Medicine, vol. 355, no. 25, pp. 2615–2617, 2006.
[24]  P. W. F. Wilson, R. B. D'Agostino, D. Levy, A. M. Belanger, H. Silbershatz, and W. B. Kannel, “Prediction of coronary heart disease using risk factor categories,” Circulation, vol. 97, no. 18, pp. 1837–1847, 1998.
[25]  J. S. Gottdiener, A. M. Arnold, G. P. Aurigemma et al., “Predictors of congestive heart failure in the elderly: the cardiovascular health study,” Journal of the American College of Cardiology, vol. 35, no. 6, pp. 1628–1637, 2000.
[26]  H. Eriksson, K. Svardsudd, B. Larsson et al., “Risk factors for heart failure in the general population: the study of men born in 1913,” European Heart Journal, vol. 10, no. 7, pp. 647–656, 1989.
[27]  Y. T. Chen, V. Vaccarino, C. S. Williams, J. Butler, L. F. Berkman, and H. M. Krumholz, “Risk factors for heart failure in the elderly: a prospective community-based study,” American Journal of Medicine, vol. 106, no. 6, pp. 605–612, 1999.
[28]  W. B. Kannel, R. B. D'Agostino, H. Silbershatz, A. J. Belanger, P. W. F. Wilson, and D. Levy, “Profile for estimating risk of heart failure,” Archives of Internal Medicine, vol. 159, no. 11, pp. 1197–1204, 1999.
[29]  J. S. Gottdiener, D. J. Reda, D. W. Williams, and B. J. Materson, “Left atrial size in hypertensive men: influence of obesity, race and age,” Journal of the American College of Cardiology, vol. 29, no. 3, pp. 651–658, 1997.
[30]  E. B. Levitan, A. Wolk, and M. A. Mittleman, “Consistency with the DASH diet and incidence of heart failure,” Archives of Internal Medicine, vol. 169, no. 9, pp. 851–857, 2009.
[31]  L. Wilhelmsen, A. Rosengren, H. Eriksson, and G. Lappas, “Heart failure in the general population of men—morbidity, risk factors and prognosis,” Journal of Internal Medicine, vol. 249, no. 3, pp. 253–261, 2001.
[32]  K. Bibbins-Domingo, F. Lin, E. Vittinghoff et al., “Predictors of heart failure among women with coronary disease,” Circulation, vol. 110, no. 11, pp. 1424–1430, 2004.
[33]  A. A. Carr, P. R. Kowey, R. B. Devereux et al., “Hospitalizations for new heart failure among subjects with diabetes mellitus in the RENAAL and LIFE studies,” American Journal of Cardiology, vol. 96, no. 11, pp. 1530–1536, 2005.
[34]  B. Butler, A. Kalogeropoulos, V. Georgiopoulou et al., “Incident heart failure prediction in the elderly: the health ABC heart failure score,” Circulation. Heart Failure, vol. 1, no. 2, pp. 125–133, 2008.
[35]  A. P. Kalogeropoulos, V. V. Georgiopoulou, T. B. Harris et al., “Prediction of incident heart failure in the elderly: validation of the health abc hf model in the cardiovascular health study,” in Proceedings of the 58th Annual Scientific Session of the American-College-of-Cardiology, p. A165, 2009.
[36]  P. A. McKee, W. P. Castelli, P. M. McNamara, and W. B. Kannel, “The natural history of congestive heart failure: the Framingham study,” The New England Journal of Medicine, vol. 285, no. 26, pp. 1441–1446, 1971.
[37]  B. M. Psaty, L. H. Kuller, D. Bild et al., “Methods of assessing prevalent cardiovascular disease in the cardiovascular health study,” Annals of Epidemiology, vol. 5, no. 4, pp. 270–277, 1995.
[38]  G. D. Schellenbaum, T. D. Rea, S. R. Heckbert et al., “Survival associated with two sets of diagnostic criteria for congestive heart failure,” American Journal of Epidemiology, vol. 160, no. 7, pp. 628–635, 2004.
[39]  G. D. Schellenbaum, S. R. Heckbert, N. L. Smith et al., “Congestive heart failure incidence and prognosis: case identification using central adjudication versus hospital discharge diagnoses,” Annals of Epidemiology, vol. 16, no. 2, pp. 115–122, 2006.
[40]  W. J. Paulus, C. Tsch?pe, J. E. Sanderson et al., “How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the heart failure and echocardiography associations of the European society of cardiology,” European Heart Journal, vol. 28, no. 20, pp. 2539–2550, 2007.
[41]  F. Zannad, W. G. Stough, B. Pitt et al., “Heart failure as an endpoint in heart failure and non-heart failure cardiovascular clinical trials: the need for a consensus definition,” European Heart Journal, vol. 29, no. 3, pp. 413–421, 2008.
[42]  M. J. Stampfer, F. B. Hu, J. E. Manson, E. B. Rimm, and W. C. Willett, “Primary prevention of coronary heart disease in women through diet and lifestyle,” The New England Journal of Medicine, vol. 343, no. 1, pp. 16–22, 2000.
[43]  P. S. Yusuf, S. Hawken, S. ?unpuu et al., “Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study,” The Lancet, vol. 364, no. 9438, pp. 937–952, 2004.
[44]  W. C. Knowler, E. Barrett-Connor, S. E. Fowler et al., “Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin,” The New England Journal of Medicine, vol. 346, no. 6, pp. 393–403, 2002.
[45]  L. J. Appel, T. J. Moore, E. Obarzanek et al., “A clinical trial of the effects of dietary patterns on blood pressure,” The New England Journal of Medicine, vol. 336, no. 16, pp. 1117–1124, 1997.
[46]  L. Djoussé, J. A. Driver, and J. M. Gaziano, “Relation between modifiable lifestyle factors and lifetime risk of heart failure,” The Journal of the American Medical Association, vol. 302, no. 4, pp. 394–400, 2009.
[47]  S. Johansson, M. A. Wallander, A. Ruigómez, and L. A. García Rodríguez, “Incidence of newly diagnosed heart failure in UK general practice,” European Journal of Heart Failure, vol. 3, no. 2, pp. 225–231, 2001.
[48]  S. Kenchaiah, H. D. Sesso, and J. M. Gaziano, “Body mass index and vigorous physical activity and the risk of heart failure among men,” Circulation, vol. 119, no. 1, pp. 44–52, 2009.
[49]  C. Spies, R. Farzaneh-Far, B. Na, A. Kanaya, N. B. Schiller, and M. A. Whooley, “Relation of obesity to heart failure hospitalization and cardiovascular events in persons with stable coronary heart disease (from the heart and soul study),” American Journal of Cardiology, vol. 104, no. 7, pp. 883–889, 2009.
[50]  B. J. Nicklas, M. Cesari, B. W. J. H. Penninx et al., “Abdominal obesity is an independent risk factor for chronic heart failure in older people,” Journal of the American Geriatrics Society, vol. 54, no. 3, pp. 413–420, 2006.
[51]  S. Kenchaiah, J. M. Gaziano, and R. S. Vasan, “Impact of obesity on the risk of heart failure and survival after the onset of heart failure,” Medical Clinics of North America, vol. 88, no. 5, pp. 1273–1294, 2004.
[52]  R. S. Vasan, “Cardiac function and obesity,” Heart, vol. 89, no. 10, pp. 1127–1129, 2003.
[53]  S. S. Anand, S. Islam, A. Rosengren et al., “Risk factors for myocardial infarction in women and men: insights from the INTERHEART study,” European Heart Journal, vol. 29, no. 7, pp. 932–940, 2008.
[54]  S. F. Quan and B. J. Gersh, “Cardiovascular consequences of sleep-disordered breathing: past, present and future: report of a workshop from the national center on sleep disorders research and the national heart, lung, and blood institute,” Circulation, vol. 109, no. 8, pp. 951–957, 2004.
[55]  C. Wong and T. H. Marwick, “Alterations in myocardial characteristics associated with obesity: Detection, mechanisms, and implications,” Trends in Cardiovascular Medicine, vol. 17, no. 1, pp. 1–5, 2007.
[56]  S. W. MacMahon, D. E. L. Wilcken, and G. J. Macdonald, “The effect of weight reduction on left ventricular mass. A randomized controlled trial in young, overweight hypertensive patients,” The New England Journal of Medicine, vol. 314, no. 6, pp. 334–339, 1986.
[57]  J. E. Manson, P. Greenland, A. Z. LaCroix et al., “Walking compared with vigorous exercise for the prevention of cardiovascular events in women,” The New England Journal of Medicine, vol. 347, no. 10, pp. 716–725, 2002.
[58]  N. L. Chase, X. Sui, D. C. Lee, and S. N. Blair, “The association of cardiorespiratory fitness and physical activity with incidence of hypertension in men,” American Journal of Hypertension, vol. 22, no. 4, pp. 417–424, 2009.
[59]  F. B. Hu, T. Y. Li, G. A. Colditz, W. C. Willett, and J. E. Manson, “Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women,” The Journal of the American Medical Association, vol. 289, no. 14, pp. 1785–1791, 2003.
[60]  M. T. Hamilton, D. G. Hamilton, and T. W. Zderic, “Exercise physiology versus inactivity physiology: an essential concept for understanding lipoprotein lipase regulation,” Exercise and Sport Sciences Reviews, vol. 32, no. 4, pp. 161–166, 2004.
[61]  T. M. Manini, J. E. Everhart, K. V. Patel et al., “Daily activity energy expenditure and mortality among older adults,” The Journal of the American Medical Association, vol. 296, no. 2, pp. 171–179, 2006.
[62]  M. H. Murphy, S. N. Blair, and E. M. Murtagh, “Accumulated versus continuous exercise for health benefit: a review of empirical studies,” Sports Medicine, vol. 39, no. 1, pp. 29–43, 2009.
[63]  W. E. Kraus, J. A. Houmard, B. D. Duscha et al., “Effects of the amount and intensity of exercise on plasma lipoproteins,” The New England Journal of Medicine, vol. 347, no. 19, pp. 1483–1492, 2002.
[64]  V. A. Cornelissen and R. H. Fagard, “Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors,” Hypertension, vol. 46, no. 4, pp. 667–675, 2005.
[65]  C. Kasapis and P. D. Thompson, “The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review,” Journal of the American College of Cardiology, vol. 45, no. 10, pp. 1563–1569, 2005.
[66]  W. L. Haskell, I. M. Lee, R. R. Pate et al., “Physical activity and public health: updated recommendation for adults from the American college of sports medicine and the American heart association,” Circulation, vol. 116, no. 9, pp. 1081–1093, 2007.
[67]  M. Hamer and Y. Chida, “Walking and primary prevention: a meta-analysis of prospective cohort studies,” British Journal of Sports Medicine, vol. 42, no. 4, pp. 238–243, 2008.
[68]  A. M. Lazarevi?, S. Nakatani, A. N. Ne?kovi? et al., “Early changes in left ventricular function in chronic asymptomatic alcoholics: relation to the duration of heavy drinking,” Journal of the American College of Cardiology, vol. 35, no. 6, pp. 1599–1606, 2000.
[69]  C. L. Bryson, K. J. Mukamal, M. A. Mittleman et al., “The association of alcohol consumption and incident heart failure: the cardiovascular health study,” Journal of the American College of Cardiology, vol. 48, no. 2, pp. 305–311, 2006.
[70]  C. R. Walsh, M. G. Larson, J. C. Evans et al., “Alcohol consumption and risk for congestive heart failure in the Framingham heart study,” Annals of Internal Medicine, vol. 136, no. 3, pp. 181–191, 2002.
[71]  A. L. Klatsky, D. Chartier, N. Udaltsova et al., “Alcohol drinking and risk of hospitalization for heart failure with and without associated coronary artery disease,” American Journal of Cardiology, vol. 96, no. 3, pp. 346–351, 2005.
[72]  L. Djoussé and J. M. Gaziano, “Alcohol consumption and heart failure in hypertensive us male physicians,” American Journal of Cardiology, vol. 102, no. 5, pp. 593–597, 2008.
[73]  K. M. Conigrave, B. F. Hu, C. A. Camargo Jr., M. J. Stampfer, W. C. Willett, and E. B. Rimm, “A prospective study of drinking patterns in relation to risk of type 2 diabetes among men,” Diabetes, vol. 50, no. 10, pp. 2390–2395, 2001.
[74]  J. M. Gaziano, J. E. Buring, J. L. Breslow et al., “Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction,” The New England Journal of Medicine, vol. 329, no. 25, pp. 1829–1834, 1993.
[75]  L. Djoussé and J. M. Gaziano, “Breakfast cereals and risk of heart failure in the Physicians' health study I,” Archives of Internal Medicine, vol. 167, no. 19, pp. 2080–2085, 2007.
[76]  L. Djoussé and J. M. Gaziano, “Egg consumption and risk of heart failure in the Physicians' health study,” Circulation, vol. 117, no. 4, pp. 512–516, 2008.
[77]  D. Mozaffarian, C. L. Bryson, R. N. Lemaitre, G. L. Burke, and D. S. Siscovick, “Fish intake and risk of incident heart failure,” Journal of the American College of Cardiology, vol. 45, no. 12, pp. 2015–2021, 2005.
[78]  J. He, L. G. Ogden, L. A. Bazzano, S. Vupputuri, C. Loria, and P. K. Whelton, “Dietary sodium intake and incidence of congestive heart failure in overweight US men and women: first national health and nutrition examination survey epidemiologic follow-up study,” Archives of Internal Medicine, vol. 162, no. 14, pp. 1619–1624, 2002.
[79]  L. Djoussé, T. Rudich, and J. M. Gaziano, “Nut consumption and risk of heart failure in the Physicians' health study I,” American Journal of Clinical Nutrition, vol. 88, no. 4, pp. 930–933, 2008.
[80]  A. J. Chicco, G. C. Sparagna, S. A. McCune et al., “Linoleate-rich high-fat diet decreases mortality in hypertensive heart failure rats compared with lard and low-fat diets,” Hypertension, vol. 52, no. 3, pp. 549–555, 2008.
[81]  I. C. Okere, D. J. Chess, T. A. McElfresh et al., “High-fat diet prevents cardiac hypertrophy and improves contractile function in the hypertensive Dahl salt-sensitive rat,” Clinical and Experimental Pharmacology and Physiology, vol. 32, no. 10, pp. 825–831, 2005.
[82]  N. Sharma, I. C. Okere, M. K. Duda et al., “High fructose diet increases mortality in hypertensive rats compared to a complex carbohydrate or high fat diet,” American Journal of Hypertension, vol. 20, no. 4, pp. 403–409, 2007.
[83]  F. J. He and G. A. MacGregor, “Salt, blood pressure and cardiovascular disease,” Current Opinion in Cardiology, vol. 22, no. 4, pp. 298–305, 2007.
[84]  F. M. Sacks, L. P. Svetkey, W. M. Vollmer et al., “Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (dash) diet,” The New England Journal of Medicine, vol. 344, no. 1, pp. 3–10, 2001.
[85]  T. F. T. Antonios and G. A. MacGregor, “Salt—more adverse effects,” The Lancet, vol. 348, no. 9022, pp. 250–251, 1996.
[86]  P. A. Swift, N. D. Markandu, G. A. Sagnella, F. J. He, and G. A. MacGregor, “Modest salt reduction reduces blood pressure and urine protein excretion in black hypertensives: a randomized control trial,” Hypertension, vol. 46, no. 2, pp. 308–312, 2005.
[87]  N. Suskin, T. Sheth, A. Negassa, and S. Yusuf, “Relationship of current and past smoking to mortality and morbidity in patients with left ventricular dysfunction,” Journal of the American College of Cardiology, vol. 37, no. 6, pp. 1677–1682, 2001.
[88]  K. K. Teo, S. Ounpuu, S. Hawken et al., “Tobacco use and risk of myocardial infarction in 52 countries in the INTERHEART study: a case-control study,” The Lancet, vol. 368, no. 9536, pp. 647–658, 2006.
[89]  M. I. Gembala, F. Ghanem, C. A. Mann, and V. L. Sorrell, “Acute changes in left ventricular diastolic function: cigarette smoking versus nicotine gum,” Clinical Cardiology, vol. 29, no. 2, pp. 61–64, 2006.
[90]  W. C. Willett, A. Green, M. J. Stampfer et al., “Relative and absolute excess risks of coronary heart disease among women who smoke cigarettes,” The New England Journal of Medicine, vol. 317, no. 21, pp. 1303–1309, 1987.
[91]  D. J. Moliterno, J. E. Willard, R. A. Lange et al., “Coronary-artery vasoconstriction induced by cocaine, cigarette smoking, or both,” The New England Journal of Medicine, vol. 330, no. 7, pp. 454–459, 1994.
[92]  J. D. Morrow, B. Frei, A. W. Longmire et al., “Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers—smoking as a cause of oxidative damage,” The New England Journal of Medicine, vol. 332, no. 18, pp. 1198–1203, 1995.
[93]  S. S. Ahmed, C. B. Moschos, and M. M. Lyons, “Cardiovascular effects of long term cigarette smoking and nicotine administration,” American Journal of Cardiology, vol. 37, no. 1, pp. 33–40, 1976.
[94]  A. Bye, S. S?rhaug, M. Ceci et al., “Carbon monoxide levels experienced by heavy smokers impair aerobic capacity and cardiac contractility and induce pathological hypertrophy,” Inhalation Toxicology, vol. 20, no. 7, pp. 635–646, 2008.
[95]  S. R. Heckbert, W. Post, G. D. N. Pearson et al., “Traditional cardiovascular risk factors in relation to left ventricular mass, volume, and systolic function by cardiac magnetic resonance imaging: the multiethnic study of atherosclerosis,” Journal of the American College of Cardiology, vol. 48, no. 11, pp. 2285–2292, 2006.
[96]  B. Lichodziejewska, K. Kurnicka, K. Grudzka, J. Ma?ysz, M. Ciurzyński, and D. Liszewska-Pfejfer, “Chronic and acute effects of smoking on left and right ventricular relaxation in young healthy smokers,” Chest, vol. 131, no. 4, pp. 1142–1148, 2007.
[97]  S. A. Kenfield, M. J. Stampfer, B. A. Rosner, and G. A. Colditz, “Smoking and smoking cessation in relation to mortality in women,” The Journal of the American Medical Association, vol. 299, no. 17, pp. 2037–2047, 2008.
[98]  S. S. Franklin, M. J. Jacobs, N. D. Wong, G. J. L'Italien, and P. Lapuerta, “Predominance of isolated systolic hypertension among middle-aged and elderly US hypertensives: analysis based on national health and nutrition examination survey (NHANES) III,” Hypertension, vol. 37, no. 3, pp. 869–874, 2001.
[99]  S. S. Franklin, M. G. Larson, S. A. Khan et al., “Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham heart study,” Circulation, vol. 103, no. 9, pp. 1245–1249, 2001.
[100]  J. B. Kostis, B. R. Davis, J. Cutler et al., “Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension,” The Journal of the American Medical Association, vol. 278, no. 3, pp. 212–216, 1997.
[101]  D. Levy, M. G. Larson, R. S. Vasan, W. B. Kannel, and K. K. L. Ho, “The progression from hypertension to congestive heart failure,” The Journal of the American Medical Association, vol. 275, no. 20, pp. 1557–1562, 1996.
[102]  D. M. Lloyd-Jones, M. G. Larson, E. P. Leip et al., “Lifetime risk for developing congestive heart failure: the Framingham heart study,” Circulation, vol. 106, no. 24, pp. 3068–3072, 2002.
[103]  K. Wolf-Maier, R. S. Cooper, J. R. Banegas et al., “Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States,” The Journal of the American Medical Association, vol. 289, no. 18, pp. 2363–2369, 2003.
[104]  P. M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P. K. Whelton, and J. He, “Global burden of hypertension: analysis of worldwide data,” The Lancet, vol. 365, no. 9455, pp. 217–223, 2005.
[105]  J. S. Drukteinis, M. J. Roman, R. R. Fabsitz et al., “Cardiac and systemic hemodynamic characteristics of hypertension and prehypertension in adolescents and young adults: the Strong heart study,” Circulation, vol. 115, no. 2, pp. 221–227, 2007.
[106]  K. T. Weber, C. G. Brilla, S. E. Campbell, G. Zhou, L. Matsubara, and E. Guarda, “Pathologic hypertrophy with fibrosis: the structural basis for myocardial failure,” Blood Pressure, vol. 1, no. 2, pp. 75–85, 1992.
[107]  R. S. Vasan and D. Levy, “The role of hypertension in the pathogenesis of heart failure: a clinical mechanistic overview,” Archives of Internal Medicine, vol. 156, no. 16, pp. 1789–1796, 1996.
[108]  M. L. Marcus, D. G. Harrison, W. M. Chilian, et al., “Alterations in the coronary circulation in hypertrophied ventricles,” Circulation, vol. 75, no. 1, pp. I-19–I-25, 1987.
[109]  S. E. Nolan, J. A. Mannisi, D. E. Bush, B. Healy, and H. F. Weisman, “Increased afterload aggravates infarct expansion after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 12, no. 5, pp. 1318–1325, 1988.
[110]  J. W. Wright, S. Mizutani, and J. W. Harding, “Pathways involved in the transition from hypertension to hypertrophy to heart failure. Treatment strategies,” Heart Failure Reviews, vol. 13, no. 3, pp. 367–375, 2008.
[111]  J. W. Wright and J. W. Harding, “The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory,” Progress in Neurobiology, vol. 72, no. 4, pp. 263–293, 2004.
[112]  P. R. Hebert, M. Moser, J. Mayer, R. J. Glynn, and C. H. Hennekens, “Recent evidence on drug therapy of mild to moderate hypertension and decreased risk of coronary heart disease,” Archives of Internal Medicine, vol. 153, no. 5, pp. 578–581, 1993.
[113]  M. Moser and P. R. Hebert, “Prevention of disease progression, left ventricular hypertrophy and congestive heart failure in hypertension treatment trials,” Journal of the American College of Cardiology, vol. 27, no. 5, pp. 1214–1218, 1996.
[114]  B. R. Davis, L. B. Piller, J. A. Cutler et al., “Role of diuretics in the prevention of heart failure: the antihypertensive and lipid-lowering treatment to prevent heart attack trial,” Circulation, vol. 113, no. 18, pp. 2201–2210, 2006.
[115]  L. M. H. Wing, C. M. Reid, P. Ryan et al., “A comparison of outcomes with angiotensin-converting-enzyme inhibitors and diuretics for hypertension in the elderly,” The New England Journal of Medicine, vol. 348, no. 7, pp. 583–592, 2003.
[116]  A. U. Klingbeil, M. Schneider, P. Martus, F. H. Messerli, and R. E. Schmieder, “A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension,” American Journal of Medicine, vol. 115, no. 1, pp. 41–46, 2003.
[117]  K. Malmqvist, T. Kahan, M. Edner et al., “Regression of left ventricular hypertrophy in human hypertension with irbesartan,” Journal of Hypertension, vol. 19, no. 6, pp. 1167–1176, 2001.
[118]  B. Dahl?f, R. B. Devereux, S. E. Kjeldsen et al., “Cardiovascular morbidity and mortality in the Losartan intervention for endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol,” The Lancet, vol. 359, no. 9311, pp. 995–1003, 2002.
[119]  C. Cuspidi, M. L. Muiesan, L. Valagussa et al., “Comparative effects of candesartan and enalapril on left ventricular hypertrophy in patients with essential hypertension: the candesartan assessment in the treatment of cardiac hypertrophy (CATCH) study,” Journal of Hypertension, vol. 20, no. 11, pp. 2293–2300, 2002.
[120]  P. Verdecchia, F. Angeli, C. Cavallini et al., “Blood pressure reduction and renin-angiotensin system inhibition for prevention of congestive heart failure: a meta-analysis,” European Heart Journal, vol. 30, no. 6, pp. 679–688, 2009.
[121]  L. H. Lindholm, B. Carlberg, and O. Samuelsson, “Should β blockers remain first choice in the treatment of primary hypertension? A meta-analysis,” The Lancet, vol. 366, no. 9496, pp. 1545–1553, 2005.
[122]  S. Bangalore, F. H. Messerli, J. B. Kostis, and C. J. Pepine, “Cardiovascular protection using β-blockers: a critical review of the evidence,” Journal of the American College of Cardiology, vol. 50, no. 7, pp. 563–572, 2007.
[123]  S. Bangalore, D. Wild, S. Parkar, M. Kukin, and F. H. Messerli, “β-Blockers for primary prevention of heart failure in patients with hypertension. Insights from a meta-analysis,” Journal of the American College of Cardiology, vol. 52, no. 13, pp. 1062–1072, 2008.
[124]  W. C. Cushman, C. E. Ford, J. A. Cutler et al., “Success and predictors of blood pressure control in diverse North American settings: the antihypertensive and lipid-lowering treatment to prevent heart attact trial (ALLHAT),” Journal of Clinical Hypertension, vol. 4, no. 6, pp. 393–404, 2002.
[125]  P. Verdecchia, J. A. Staessen, F. Angeli et al., “Usual versus tight control of systolic blood pressure in non-diabetic patients with hypertension (Cardio-Sis): an open-label randomised trial,” The Lancet, vol. 374, no. 9689, pp. 525–533, 2009.
[126]  F. A. Masoudi and S. E. Inzucchi, “Diabetes mellitus and heart failure: epidemiology, mechanisms, and pharmacotherapy,” American Journal of Cardiology, vol. 99, no. 4, pp. 113–132, 2007.
[127]  S. Boudina and E. D. Abel, “Diabetic cardiomyopathy revisited,” Circulation, vol. 115, no. 25, pp. 3213–3223, 2007.
[128]  C. K. Choy, J. E. Rodgers, J. M. Nappi, and S. T. Haines, “Type 2 diabetes mellitus and heart failure,” Pharmacotherapy, vol. 28, no. 2, pp. 170–192, 2008.
[129]  UK Prospective Diabetes Study (UKPDS) Group, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” The Lancet, vol. 352, no. 9131, pp. 837–853, 1998.
[130]  S. E. Kahn, S. M. Haffner, M. A. Heise et al., “Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy,” The New England Journal of Medicine, vol. 355, no. 23, pp. 2427–2443, 2006.
[131]  J. L. Chiasson, R. G. Josse, R. Gomis, M. Hanefeld, A. Karasik, and M. Laakso, “Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial,” The Journal of the American Medical Association, vol. 290, no. 4, pp. 486–494, 2003.
[132]  UK Prospective Diabetes Study Group, “Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38,” British Medical Journal, vol. 317, no. 7160, p. 713, 1998.
[133]  A. V. Chobanian, G. L. Bakris, H. R. Black et al., “The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report,” The Journal of the American Medical Association, vol. 289, no. 19, pp. 2560–2572, 2003.
[134]  S. Yusuf, P. Sleight, J. Pogue et al., “Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients,” The New England Journal of Medicine, vol. 342, no. 3, pp. 145–153, 2000.
[135]  Heart Outcomes Prevention Evaluation Study Investigators, “Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the hope study and micro-hope substudy,” The Lancet, vol. 355, no. 9200, pp. 253–259, 2000.
[136]  J. Bosch, E. Lonn, J. Pogue, J. M. O. Arnold, G. R. Dagenais, and S. Yusuf, “Long-term effects of ramipril on cardiovascular events and on diabetes: results of the HOPE study extension,” Circulation, vol. 112, no. 9, pp. 1339–1346, 2005.
[137]  B. M. Brenner, M. E. Cooper, D. de Zeeuw et al., “Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy,” The New England Journal of Medicine, vol. 345, no. 12, pp. 861–869, 2001.
[138]  L. H. Lindholm, H. Ibsen, B. Dahl?f et al., “Cardiovascular morbidity and mortality in patients with diabetes in the Losartan intervention for endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol,” The Lancet, vol. 359, no. 9311, pp. 1004–1010, 2002.
[139]  G. J. S. Cooper, A. A. Young, G. D. Gamble et al., “A copper(II)-selective chelator ameliorates left-ventricular hypertrophy in type 2 diabetic patients: a randomised placebo-controlled study,” Diabetologia, vol. 52, no. 4, pp. 715–722, 2009.
[140]  G. J. S. Cooper, A. R. J. Phillips, S. Y. Choong et al., “Regeneration of the heart in diabetes by selective copper chelation,” Diabetes, vol. 53, no. 9, pp. 2501–2508, 2004.
[141]  S. Setoguchi, R. J. Glynn, J. Avorn, M. A. Mittleman, R. Levin, and W. C. Winkelmayer, “Improvements in long-term mortality after myocardial infarction and increased use of cardiovascular drugs after discharge: a 10-year trend analysis,” Journal of the American College of Cardiology, vol. 51, no. 13, pp. 1247–1254, 2008.
[142]  S. R. Tiyyagura and S. P. Pinney, “Left ventricular remodeling after myocardial infarction: past, present, and future,” Mount Sinai Journal of Medicine, vol. 73, no. 6, pp. 840–851, 2006.
[143]  H. Ishii, T. Amano, T. Matsubara, and T. Murohara, “Pharmacological intervention for prevention of left ventricular remodeling and improving prognosis in myocardial infarction,” Circulation, vol. 118, no. 25, pp. 2710–2718, 2008.
[144]  T. Baks, R. J. van Geuns, E. Biagini et al., “Effects of primary angioplasty for acute myocardial infarction on early and late infarct size and left ventricular wall characteristics,” Journal of the American College of Cardiology, vol. 47, no. 1, pp. 40–44, 2006.
[145]  J. Vinten-Johansen, Z. Q. Zhao, A. J. Zatta, H. Kin, M. E. Halkos, and F. Kerendi, “Postconditioning: a new link in nature's armor against myocardial ischemia-reperfusion injury,” Basic Research in Cardiology, vol. 100, no. 4, pp. 295–310, 2005.
[146]  L. Klein and M. Gheorghiade, “Coronary artery disease and prevention of heart failure,” Medical Clinics of North America, vol. 88, no. 5, pp. 1209–1235, 2004.
[147]  A. Lerman and A. M. Zeiher, “Endothelial function: cardiac events,” Circulation, vol. 111, no. 3, pp. 363–368, 2005.
[148]  F. Grigioni, D. Detaint, J. F. Avierinos, C. Scott, J. Tajik, and M. Enriquez-Sarano, “Contribution of ischemic mitral regurgitation to congestive heart failure after myocardial infarction,” Journal of the American College of Cardiology, vol. 45, no. 2, pp. 260–267, 2005.
[149]  P. D. Henry, R. Schuchleib, J. Davis, E. S. Weiss, and B. E. Sobel, “Myocardial contracture and accumulation of mitochondrial calcium in ischemic rabbit heart,” The American Journal of Physiology, vol. 233, no. 6, pp. H677–H684, 1977.
[150]  Y. Ito, J. Suko, and C. A. Chidsey, “Intracellular calcium and myocardial contractility. V. Calcium uptake of sarcoplasmic reticulum fractions in hypertrophied and failing rabbit hearts,” Journal of Molecular and Cellular Cardiology, vol. 6, no. 3, pp. 237–247, 1974.
[151]  M. G. Sutton and N. Sharpe, “Left ventricular remodeling after myocardial infarction: pathophysiology and therapy,” Circulation, vol. 101, no. 25, pp. 2981–2988, 2000.
[152]  G. Takemura, M. Nakagawa, H. Kanamori, S. Minatoguchi, and H. Fujiwara, “Benefits of reperfusion beyond infarct size limitation,” Cardiovascular Research, vol. 83, no. 2, pp. 269–276, 2009.
[153]  E. Ambrosioni, C. Borghi, B. Magnani, and The Survival of Myocardial Infarction Long-Term Evaluation (SMILE) Study Investigators, “The effect of the angiotensin-converting-enzyme inhibitor zofenopril on mortality and morbidity after anterior myocardial infarction,” The New England Journal of Medicine, vol. 332, no. 2, pp. 80–85, 1995.
[154]  K. M. Fox, “Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study),” The Lancet, vol. 362, no. 9386, pp. 782–788, 2003.
[155]  M. A. Pfeffer, E. Braunwald, L. A. Moye et al., “Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction—results of the survival and ventricular enlargement trial,” The New England Journal of Medicine, vol. 327, no. 10, pp. 669–677, 1992.
[156]  S. Yusuf, K. Teo, C. Anderson et al., “Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial,” The Lancet, vol. 372, no. 9644, pp. 1174–1183, 2008.
[157]  S. Yusuf, K. K. Teo, J. Pogue et al., “Telmisartan, ramipril, or both in patients at high risk for vascular events,” The New England Journal of Medicine, vol. 358, no. 15, pp. 1547–1559, 2008.
[158]  E. M. Antman, M. Hand, P. W. Armstrong et al., “2007 Focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American college of cardiology/American heart association task force on practice guidelines,” Circulation, vol. 117, no. 2, pp. 296–329, 2008.
[159]  W. S. Colucci, T. J. Kolias, K. F. Adams et al., “Metoprolol reverses left ventricular remodeling in patients with asymptomatic systolic dysfunction: the REversal of VEntricular Remodeling with Toprol-XL (REVERT) trial,” Circulation, vol. 116, no. 1, pp. 49–56, 2007.
[160]  B. Pitt, W. Remme, F. Zannad et al., “Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction,” The New England Journal of Medicine, vol. 348, no. 14, pp. 1309–1321, 2003.
[161]  E. M. Antman, D. T. Anbe, P. W. Armstrong et al., “ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American college of cardiology/American heart association task force on practice guidelines (committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction),” Circulation, vol. 110, no. 9, pp. e82–e292, 2004.
[162]  H. Ishii, S. Ichimiya, M. Kanashiro et al., “Effects of receipt of chronic statin therapy before the onset of acute myocardial infarction: a retrospective study in patients undergoing primary percutaneous coronary intervention,” Clinical Therapeutics, vol. 28, no. 11, pp. 1812–1819, 2006.
[163]  J. Kjekshus, T. Pedersen, A. G. Olsson, O. Faergeman, and K. Pyorala, “The effects of simvastatin on the incidence of heart failure in patients with coronary heart disease,” Journal of Cardiac Failure, vol. 3, no. 4, pp. 249–254, 1997.
[164]  J. A. Udell and J. G. Ray, “Primary and secondary prevention of heart failure with statins,” Expert Review of Cardiovascular Therapy, vol. 4, no. 6, pp. 917–926, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133