The accumulating evidence demonstrates the essential role of neuregulin-1 signaling in the adult heart, and, moreover, indicates that an impaired neuregulin signaling exacerbates the doxorubicin-mediated cardiac toxicity. Despite this strong data, the specific cardiomyocyte targets of the active erbB2/erbB4 heterodimer remain unknown. In this paper, we examined pathways involved in cardiomyocyte damage as a result of the cardiac sensitization to anthracycline toxicity in the ventricular muscle-specific erbB4 knockout mouse. We performed morphological analyses to evaluate the ventricular remodeling and employed a cDNA microarray to assess the characteristic gene expression profile, verified data by real-time RT-PCR, and then grouped into functional categories and pathways. We confirm the upregulation of genes related to the classical signature of a hypertrophic response, implicating an erbB2-dependent mechanism in doxorubicin-treated erbB4-KO hearts. Our results indicate the remarkable downregulation of IGF-I/PI-3′ kinase pathway and extends our current knowledge by uncovering an altered ubiquitin-proteasome system leading to cardiomyocyte autophagic vacuolization. 1. Introduction Overexpression of erbB2 oncogene in breast cancer cells is indicative of highly proliferative tumors with a poor prognosis following conventional chemotherapy [1]. Combined therapy of anthracycline derivatives and antibodies against erbB2 (i.e., trastuzumab, Herceptin) is clinically effective with objective tumor regressions and lower rates of both recurrence and mortality of breast cancer patients relatively resistant to tamoxifen [2, 3]. However, an undesired effect of this therapy is the severe dilated cardiomyopathy manifested in a subpopulation of treated patients. The synergistic cardiotoxicity of the combined therapy results in a 30% incidence of cardiac dilation compared to the 1–5% registered in patients receiving either trastuzumab or anthrayclines alone. Long-term retrospective analyses of trastuzumab suggest that an impaired neuregulin-1 (NRG-1) signaling sensitizes the heart towards a toxic response, that is, to anthracycline derivatives [3]. Murine models harboring mutations in any component of the NRG-1 signaling through tyrosine kinase receptors erbB2 and erbB4 have demonstrated that this pathway is critical for cardiac development and the maintenance of proper adult heart remodeling and function. Conditional deletion of either erbB2 or erbB4 receptors in ventricular muscle leads to dilated cardiomyopathy in adult mice [4–6]. Despite the evidence on the
References
[1]
J. Baselga, “New horizons: gene therapy for cancer,” Anti-Cancer Drugs, vol. 10, supplement 1, pp. S39–S42, 1999.
[2]
D. J. Slamon, B. Leyland-Jones, S. Shak et al., “Use of chemotherapy plus a monoclonal antibody against her2 for metastatic breast cancer that overexpresses HER2,” New England Journal of Medicine, vol. 344, no. 11, pp. 783–792, 2001.
[3]
E. H. Romond, E. A. Perez, J. Bryant et al., “Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer,” New England Journal of Medicine, vol. 353, no. 16, pp. 1673–1684, 2005.
[4]
C. ?zcelik, B. Erdmann, B. Pilz et al., “Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 8880–8885, 2002.
[5]
S. A. Crone, Y. Y. Zhao, L. Fan et al., “ErbB2 is essential in the prevention of dilated cardiomyopathy,” Nature Medicine, vol. 8, no. 5, pp. 459–465, 2002.
[6]
H. García-Rivello, J. Taranda, M. Said et al., “Dilated cardiomyopathy in Erb-b4-deficient ventricular muscle,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 289, no. 3, pp. H1153–H1160, 2005.
[7]
Y. Sadzuka, T. Sugiyama, K. Shimoi, N. Kinae, and S. Hirota, “Protective effect of flavonoids on doxorubicin-induced cardiotoxicity,” Toxicology Letters, vol. 92, no. 1, pp. 1–7, 1997.
[8]
H. C. Lai, Y. C. Yeh, C. T. Ting et al., “Doxycycline suppresses doxorubicin-induced oxidative stress and cellular apoptosis in mouse hearts,” European Journal of Pharmacology, vol. 644, no. 1–3, pp. 176–187, 2010.
[9]
M. Said, R. Becerra, C. A. Valverde et al., “Calcium-calmodulin dependent protein kinaseII (CaMKII: a main signal responsible for early reperfusion arrhythmias,” Journal of Molecular and Cellular Cardiology, vol. 51, no. 6, pp. 936–944, 2011.
[10]
V. G. Tusher, R. Tibshirani, and G. Chu, “Significance analysis of microarrays applied to the ionizing radiation response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 5116–5121, 2001.
[11]
M. Wellner, R. Dechend, J. K. Park et al., “Cardiac gene expression profile in rats with terminal heart failure and cachexia,” Physiological Genomics, vol. 20, pp. 256–267, 2005.
[12]
M. Zhao, A. Chow, J. Powers, G. Fajardo, and D. Bernstein, “Microarray analysis of gene expression after transverse aortic constriction in mice,” Physiological Genomics, vol. 19, pp. 93–105, 2005.
[13]
S. W. Kong, N. Bodyak, P. Yue et al., “Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats,” Physiological Genomics, vol. 21, pp. 34–42, 2005.
[14]
M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool for the unification of biology,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000.
[15]
B. Jiang, B. Zhang, P. Liang et al., “Nucleolin/C23 mediates the antiapoptotic effect of heat shock protein 70 during oxidative stress,” FEBS Journal, vol. 277, no. 3, pp. 642–652, 2010.
[16]
M. Koch, K. Savvatis, M. Scheeler et al., “Immunosuppression with an interleukin-2 fusion protein leads to improved LV function in experimental ischemic cardiomyopathy,” International Immunopharmacology, vol. 10, no. 2, pp. 207–212, 2010.
[17]
H. Ushikoshi, T. Takahashi, X. Chen et al., “Local overexpression of HB-EGF exacerbates remodeling following myocardial infarction by activating noncardiomyocytes,” Laboratory Investigation, vol. 85, no. 7, pp. 862–873, 2005.
[18]
M. Asakura, M. Kitakaze, S. Takashima et al., “Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy,” Nature Medicine, vol. 8, no. 1, pp. 35–40, 2002.
[19]
J. R. McMullen, T. Shioi, W. Y. Huang et al., “The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110α) pathway,” Journal of Biological Chemistry, vol. 279, no. 6, pp. 4782–4793, 2004.
[20]
P. C. Schulze, J. Fang, K. A. Kassik et al., “Transgenic overexpression of locally acting insulin-like growth factor-1 inhibits ubiquitin-mediated muscle atrophy in chronic left-ventricular dysfunction,” Circulation Research, vol. 97, no. 5, pp. 418–426, 2005.
[21]
P. Mukhopadhyay, M. Rajesh, S. Bátkai et al., “Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 296, no. 5, pp. H1466–H1483, 2009.
[22]
T. J. Schulz, D. Westermann, F. Isken et al., “Activation of mitochondrial energy metabolism protects against cardiac failure.,” Aging, vol. 2, no. 11, pp. 843–853, 2010.
[23]
C. M. Hertig, S. W. Kubalak, Y. Wang, and K. R. Chien, “Synergistic roles of neuregulin-1 and insulin-like growth factor-I in activation of the phosphatidylinositol 3-kinase pathway and cardiac chamber morphogenesis,” Journal of Biological Chemistry, vol. 274, no. 52, pp. 37362–37369, 1999.
[24]
F. F. Liu, J. R. Stone, A. J. T. Schuldt et al., “Heterozygous knockout of neuregulin-1 gene in mice exacerbates doxorubicin-induced heart failure,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 289, no. 2, pp. H660–H666, 2005.
[25]
H. El Azzouzi, S. Leptidis, M. Bourajjaj et al., “Peroxisome proliferator-activated receptor (PPAR) gene profiling uncovers insulin-like growth factor-1 as a PPARα target gene in cardioprotection,” Journal of Biological Chemistry, vol. 286, no. 16, pp. 14598–14607, 2011.
[26]
T. Yoshida, L. Semprun-Prieto, S. Sukhanov, and P. Delafontaine, “IGF-1 prevents ANG II-induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin ligase atrogin-1 expression,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 298, no. 5, pp. H1565–H1570, 2010.
[27]
Y. Yamamoto, Y. Hoshino, T. Ito et al., “Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via p38-MAP kinase in cardiac myocytes,” Cardiovascular Research, vol. 79, no. 1, pp. 89–96, 2008.
[28]
M. S. Willis, W. H. D. Townley-Tilson, E. Y. Kang, J. W. Homeister, and C. Patterson, “Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease,” Circulation Research, vol. 106, no. 3, pp. 463–478, 2010.
[29]
P. Dhesi, F. Tehrani, J. Fuess, and E. R. Schwarz, “How does the heart (not) die? The role of autophagy in cardiomyocyte homeostasis and cell death,” Heart Failure Reviews, vol. 15, no. 1, pp. 15–21, 2010.
[30]
S. Schlossarek and L. Carrier, “The ubiquitin-proteasome system in cardiomyopathies,” Current Opinion in Cardiology, vol. 26, no. 3, pp. 190–195, 2011.
[31]
S. Kostin, L. Pool, A. Els?sser et al., “Myocytes die by multiple mechanisms in failing human hearts,” Circulation Research, vol. 92, no. 7, pp. 715–724, 2003.
[32]
L. Galluzzi, I. Vitale, J. M. Abrams et al., “Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death,” Cell Death and Differentiation, vol. 19, no. 1, pp. 107–120, 2012.
[33]
C. A. Vigliano, P. M. Cabeza Meckert, M. Diez et al., “Cardiomyocyte hypertrophy, oncosis, and autophagic vacuolization predict mortality in idiopathic dilated cardiomyopathy with advanced heart failure,” Journal of the American College of Cardiology, vol. 57, no. 14, pp. 1523–1531, 2011.
[34]
D. Cardinale, A. Colombo, R. Torrisi et al., “Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation,” Journal of Clinical Oncology, vol. 28, no. 25, pp. 3910–3916, 2010.
[35]
H. Sawaya, I. A. Sebag, J. C. Plana et al., “Early detection and prediction of cardiotoxicity in chemotherapy-treated patients,” American Journal of Cardiology, vol. 107, no. 9, pp. 1375–1380, 2011.