Coronary stenting became a mainstay in coronary revascularization therapy. Despite tremendous advances in therapy, in-stent restenosis (ISR) remains a key problem after coronary stenting. Coronary CT angiography evolved as a valuable tool in the diagnostic workup of patients after coronary revascularization therapy. It has a negative predictive value in the range of 98% for ruling out significant ISR. As CT imaging of coronary stents depends on patient and stent characteristics, patient selection is crucial for success. Ideal candidates have stents with a diameter of 3?mm and more. Nevertheless, even with most recent CT scanners, about 8% of stents are not accessible mostly due to blooming or motion artifacts. While the diagnosis of ISR is currently based on the visual assessment of the stent lumen, functional information on the hemodynamic significance of in-stent stenosis became available with the most recent generation of dual source CT scanners. This paper provides a comprehensive overview on previous developments, current techniques, and clinical evidence for cardiac CT in patients with coronary artery stents. 1. Rationale for CT Imaging of Coronary Stents Coronary artery stenting was pioneered in the mid 1980s [1]. It rapidly replaced “plain old balloon angioplasty” for coronary revascularization and became the most commonly used revascularization technique in obstructive coronary artery disease. The major drawback of coronary artery stenting is the occurrence of in-stent restenosis (ISR), which has been reported to occur in 11 to 46% at 6 months in bare metal stents (BMS) [2]. With introduction of drug eluting stents (DES), early ISR became less common and nowadays about 76% of revascularizations are performed using DES [3]. However, ISR still poses a major problem in coronary revascularization therapy with more than 200.000 estimated cases of DES ISR in the US alone. Late catchup in ISR when using DES has also been discussed [4, 5]. Moreover, in-stent thrombosis has been identified as a relevant problem in DES [6]. Another potential late complication of DES is the occurrence of stent fractures. The latter is considered a predisposing factor for ISR and late thrombosis. Coronary stent fractures are diagnosed in about 3% of patients [7], but autopsy data reports a much higher frequency of up to 29% [8]. While acute in-stent thrombosis typically becomes symptomatic with chest pain, the detection of ISR is more problematic as patients are often asymptomatic and about half of the patients with significant ISR do not experience any symptoms [9]. In
References
[1]
U. Sigwart, J. Puel, and V. Mirkovitch, “Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty,” The New England Journal of Medicine, vol. 316, no. 12, pp. 701–706, 1987.
[2]
D. Antoniucci, R. Valenti, G. M. Santoro et al., “Restenosis after coronary stenting in current clinical practice,” American Heart Journal, vol. 135, no. 3, pp. 510–518, 1998.
[3]
V. L. Roger, A. S. Go, D. M. Lloyd-Jones et al., “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation, vol. 125, pp. e2–e220, 2011.
[4]
P. Vermeersch, P. Agostoni, S. Verheye et al., “increased late mortality after sirolimus-eluting stents versus bare-metal stents in diseased saphenous vein grafts. results from the randomized delayed rrisc trial,” Journal of the American College of Cardiology, vol. 50, no. 3, pp. 261–267, 2007.
[5]
K. W. Park, C. H. Kim, H. Y. Lee et al., “Does “late catch-up” exist in drug-eluting stents: insights from a serial quantitative coronary angiography analysis of sirolimus versus paclitaxel-eluting stents,” American Heart Journal, vol. 159, pp. 446–453, 2010.
[6]
G. W. Stone, J. W. Moses, S. G. Ellis et al., “Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents,” The New England Journal of Medicine, vol. 356, no. 10, pp. 998–1008, 2007.
[7]
J. Aoki, G. Nakazawa, K. Tanabe et al., “Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation,” Catheterization and Cardiovascular Interventions, vol. 69, no. 3, pp. 380–386, 2007.
[8]
G. Nakazawa, A. V. Finn, M. Vorpahl et al., “Incidence and predictors of drug-eluting stent fracture in human coronary artery. A pathologic analysis,” Journal of the American College of Cardiology, vol. 54, no. 21, pp. 1924–1931, 2009.
[9]
M. J. Zellweger, M. Weinbacher, A. W. Zutter et al., “Long-term outcome of patients with silent versus symptomatic ischemia six months after percutaneous coronary intervention and stenting,” Journal of the American College of Cardiology, vol. 42, no. 1, pp. 33–40, 2003.
[10]
G. Dori, Y. Denekamp, S. Fishman, and H. Bitterman, “Exercise stress testing, myocardial perfusion imaging and stress echocardiography for detecting restenosis after successful percutaneous transluminal coronary angioplasty: a review of performance,” Journal of Internal Medicine, vol. 253, no. 3, pp. 253–262, 2003.
[11]
H. E. Park, B. K. Koo, K. W. Park et al., “Diagnostic value of myocardial SPECT to detect in-stent restenosis after drug-eluting stent implantation,” The International Journal of Cardiovascular Imaging. In press.
[12]
B. Chandrasekar, S. Doucet, L. Bilodeau et al., “Complications of cardiac catheterization in the current era: a single-center experience,” Catheterization and Cardiovascular Interventions, vol. 52, no. 3, pp. 289–295, 2001.
[13]
E. Spuentrup, A. Ruebben, A. Mahnken et al., “Artifact-free coronary magnetic resonance angiography and coronary vessel wall imaging in the presence of a new, metallic, coronary magnetic resonance imaging stent,” Circulation, vol. 111, no. 8, pp. 1019–1026, 2005.
[14]
O. Yamaoka, K. Ikeno, H. Fujioka et al., “Detection of Palmaz-Schatz stent by ultrafast CT,” Journal of Computer Assisted Tomography, vol. 19, no. 1, pp. 128–130, 1995.
[15]
A. Schmermund, M. Haude, D. Baumgart et al., “Non-invasive assessment of coronary Palmaz-Schatz stents by contrast enhanced electron beam computed tomography,” European Heart Journal, vol. 17, no. 10, pp. 1546–1553, 1996.
[16]
F. D. Knollmann, J. M?ller, A. Gebert, C. Bethge, and R. Felix, “Assessment of coronary artery stent patency by electron-beam CT,” European Radiology, vol. 14, no. 8, pp. 1341–1347, 2004.
[17]
H. Pump, S. Moehlenkamp, C. Sehnert et al., “Electron-beam CT in the noninvasive assessment of coronary stent patency,” Academic Radiology, vol. 5, no. 12, pp. 858–862, 1998.
[18]
H. Pump, S. M?hlenkamp, C. A. Sehnert et al., “Coronary arterial stent patency: assessment with electron-beam CT,” Radiology, vol. 214, no. 2, pp. 447–452, 2000.
[19]
Y. Zhou, R. P. Dai, R. L. Gao, S. Z. Lü, and Y. D. Chen, “Clinical evaluation of intracoronary in-stent stenosis by electron-beam CT single flow mode study,” Zhonghua xin xue guan bing za zhi, vol. 33, no. 8, pp. 687–690, 2005 (Chinese).
[20]
B. Ohnesorge, T. Flohr, C. Becker et al., “Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience,” Radiology, vol. 217, no. 2, pp. 564–571, 2000.
[21]
S. Krüger, A. H. Mahnken, A. M. Sinha et al., “Multislice spiral computed tomography for the detection of coronary stent restenosis and patency,” International Journal of Cardiology, vol. 89, no. 2-3, pp. 167–172, 2003.
[22]
M. L. Storto, R. Marano, N. Maddestra, M. Caputo, M. Zimarino, and L. Bonomo, “Images in cardiovascular medicine. Multislice spiral computed tomography for in-stent restenosis,” Circulation, vol. 105, no. 16, p. 2005, 2002.
[23]
D. Maintz, M. Grude, E. M. Fallenberg, W. Heindel, and R. Fischbach, “Assessment of coronary arterial stents by multislice-ct angiography,” Acta Radiologica, vol. 44, no. 6, pp. 597–603, 2003.
[24]
G. Ligabue, R. Rossi, C. Ratti, M. Favali, M. G. Modena, and R. Romagnoli, “Noninvasive evaluation of coronary artery stents patency after PTCA: role of Multislice computed tomography,” Radiologia Medica, vol. 108, no. 1-2, pp. 128–137, 2004.
[25]
P. Mazzarotto, P. Di Renzi, G. M. Paluello et al., “Comparison between four-slice computed tomography and coronary angiography for the assessment of coronary stents,” Journal of Cardiovascular Medicine, vol. 7, no. 5, pp. 328–334, 2006.
[26]
J. D. Schuijf, J. J. Bax, J. W. Jukema et al., “Feasibility of assessment of coronary stent patency using 16-slice computed tomography,” American Journal of Cardiology, vol. 94, no. 4, pp. 427–430, 2004.
[27]
M. Gilard, J. C. Cornily, G. Rioufol et al., “Noninvasive assessment of left main coronary stent patency with 16-slice computed tomography,” American Journal of Cardiology, vol. 95, no. 1, pp. 110–112, 2005.
[28]
F. Cademartiri, N. Mollet, P. A. Lemos et al., “Usefulness of multislice computed tomographic coronary angiography to assess in-stent restenosis,” American Journal of Cardiology, vol. 96, no. 6, pp. 799–802, 2005.
[29]
M. Watanabe, S. Uemura, H. Iwama et al., “Usefulness of 16-slice multislice spiral computed tomography for follow-up study of coronary stent implantation,” Circulation Journal, vol. 70, no. 6, pp. 691–697, 2006.
[30]
M. Gilard, J. C. Cornily, P. Y. Pennec et al., “Assessment of coronary artery stents by 16 slice computed tomography,” Heart, vol. 92, no. 1, pp. 58–61, 2006.
[31]
T. Kitagawa, T. Fujii, Y. Tomohiro et al., “Noninvasive assessment of coronary stents in patients by 16-slice computed tomography,” International Journal of Cardiology, vol. 109, no. 2, pp. 188–194, 2006.
[32]
K. Ohnuki, S. Yoshida, M. Ohta et al., “New diagnostic technique in multi-slice computed tomography for in-stent restenosis: pixel count method,” International Journal of Cardiology, vol. 108, no. 2, pp. 251–258, 2006.
[33]
J. M. Kefer, E. Coche, J. L. J. Vanoverschelde, and B. L. Gerber, “Diagnostic accuracy of 16-slice multidetector-row CT for detection of in-stent restenosis vs detection of stenosis in nonstented coronary arteries,” European Radiology, vol. 17, no. 1, pp. 87–96, 2007.
[34]
V. Chabbert, D. Carrie, M. Bennaceur et al., “Evaluation of in-stent restenosis in proximal coronary arteries with multidetector computed tomography (MDCT),” European Radiology, vol. 17, no. 6, pp. 1452–1463, 2007.
[35]
K. H. Soon, N. Cox, I. Chaitowitz et al., “Non-invasive computed tomography angiography in the assessment of coronary stent patency: an Australian experience,” Internal Medicine Journal, vol. 37, no. 6, pp. 360–364, 2007.
[36]
G. Mühlenbruch, A. H. Mahnken, M. Das et al., “Evaluation of aortocoronary bypass stents with cardiac MDCT compared with conventional catheter angiography,” American Journal of Roentgenology, vol. 188, no. 2, pp. 361–369, 2007.
[37]
C. Tedeschi, G. Ratti, R. De Rosa et al., “Usefulness of multislice computed tomography to assess patency of coronary artery stents versus conventional coronary angiography,” Journal of Cardiovascular Medicine, vol. 9, no. 5, pp. 485–492, 2008.
[38]
T. Kitagawa, H. Yamamoto, J. Horiguchi et al., “Usefulness of measuring coronary lumen density with multi-slice computed tomography to detect in-stent restenosis,” International Journal of Cardiology, vol. 124, no. 2, pp. 239–243, 2008.
[39]
T. Gaspar, D. A. Halon, B. S. Lewis et al., “Diagnosis of coronary in-stent restenosis with multidetector row spiral computed tomography,” Journal of the American College of Cardiology, vol. 46, no. 8, pp. 1573–1579, 2005.
[40]
M. Hamon, L. Champ-Rigot, R. Morello, J. W. Riddell, and M. Hamon, “Diagnostic accuracy of in-stent coronary restenosis detection with multislice spiral computed tomography: a meta-analysis,” European Radiology, vol. 18, no. 2, pp. 217–225, 2008.
[41]
D. Maintz, H. Seifarth, T. Flohr et al., “Improved coronary artery stent visualization and in-stent stenosis detection using 16-slice computed-tomography and dedicated image reconstruction technique,” Investigative Radiology, vol. 38, no. 12, pp. 790–795, 2003.
[42]
A. H. Mahnken, A. Buecker, J. E. Wildberger et al., “Coronary artery stents in multislice computed tomography: in vitro artifact evaluation,” Investigative Radiology, vol. 39, no. 1, pp. 27–33, 2004.
[43]
S. Suzuki, S. Furui, T. Kaminaga et al., “Evaluation of coronary stents in vitro with CT angiography: effect of stent diameter, convolution kernel, and vessel orientation to the z-axis,” Circulation Journal, vol. 69, no. 9, pp. 1124–1131, 2005.
[44]
S. H. Chung, Y. J. Kim, J. Hur et al., “Evaluation of coronary artery in-stent restenosis by 64-section computed tomography: factors affecting assessment and accurate diagnosis,” Journal of Thoracic Imaging, vol. 25, no. 1, pp. 57–63, 2010.
[45]
D. A. Halon, T. Gaspar, S. Adawi, N. Peled, and B. S. Lewis, “Coronary stent assessment on multidetector computed tomography: source and predictors of image distortion,” International Journal of Cardiology, vol. 128, no. 1, pp. 62–68, 2008.
[46]
J. Zhao, L. L. Zheng, and Y. Yang, “Evaluation of coronary artery in-stent patency using 64-slice computed tomography,” Coronary Artery Disease, vol. 22, pp. 540–552, 2011.
[47]
D. Andreini, G. Pontone, A. L. Bartorelli et al., “Comparison of feasibility and diagnostic accuracy of 64-slice multidetector computed tomographic coronary angiography versus invasive coronary angiography versus intravascular ultrasound for evaluation of in-stent restenosis,” American Journal of Cardiology, vol. 103, no. 10, pp. 1349–1358, 2009.
[48]
D. Maintz, M. C. Burg, H. Seifarth et al., “Update on multidetector coronary CT angiography of coronary stents: in vitro evaluation of 29 different stent types with dual-source CT,” European Radiology, vol. 19, no. 1, pp. 42–49, 2009.
[49]
D. Maintz, H. Seifarth, R. Raupach et al., “64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents,” European Radiology, vol. 16, no. 4, pp. 818–826, 2006.
[50]
A. H. Mahnken, T. Seyfarth, T. Flohr et al., “Flat-panel detector computed tomography for the assessment of coronary artery stents: phantom study in comparison with 16-slice spiral computed tomography,” Investigative Radiology, vol. 40, no. 1, pp. 8–13, 2005.
[51]
M. Ionescu, R. W. Metcalfe, D. Cody, M. V. Y. Alvarado, J. Hipp, and G. Benndorf, “Spatial resolution limits of multislice computed tomography (MS-CT), C-arm-CT, and flat panel-CT (FP-CT) compared to MicroCT for visualization of a small metallic stent,” Academic Radiology, vol. 18, no. 7, pp. 866–875, 2011.
[52]
A. H. Mahnken, G. Mühlenbruch, T. Seyfarth et al., “64-slice computed tomography assessment of coronary artery stents: a phantom study,” Acta Radiologica, vol. 47, no. 1, pp. 36–42, 2006.
[53]
D. T. Boll, E. M. Merkle, E. K. Paulson, and T. R. Fleiter, “Coronary stent patency: dual-energy multidetector CT assessment in a pilot study with anthropomorphic phantom,” Radiology, vol. 247, no. 3, pp. 687–695, 2008.
[54]
G. Van Gompel, K. Van Slambrouck, M. Defrise et al., “Iterative correction of beam hardening artifacts in CT,” Medical Physics, vol. 38, no. 1, pp. S36–S49, 2011.
[55]
H. Seifarth, R. Raupach, S. Schaller et al., “Assessment of coronary artery stents using 16-slice MDCT angiography: evaluation of a dedicated reconstruction kernel and a noise reduction filter,” European Radiology, vol. 15, no. 4, pp. 721–726, 2005.
[56]
J. K. Min, R. V. Swaminathan, M. Vass, S. Gallagher, and J. W. Weinsaft, “High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography,” Journal of Cardiovascular Computed Tomography, vol. 3, no. 4, pp. 246–251, 2009.
[57]
J. M. Groen, M. J. W. Greuter, P. M. A. Van Ooijen, T. P. Willems, and M. Oudkerk, “Initial results on visualization of coronary artery stents at multiple heart rates on a moving heart phantom using 64-MDCT,” Journal of Computer Assisted Tomography, vol. 30, no. 5, pp. 812–817, 2006.
[58]
J. M. Groen, M. J. W. Greuter, P. M. A. van Ooijen, and M. Oudkerk, “A new approach to the assessment of lumen visibility of coronary artery stent at various heart rates using 64-slice MDCT,” European Radiology, vol. 17, no. 7, pp. 1879–1884, 2007.
[59]
H. Seifarth, M. ?zgün, R. Raupach et al., “64-Versus 16-slice CT angiography for coronary artery stent assessment: in vitro experience,” Investigative Radiology, vol. 41, no. 1, pp. 22–27, 2006.
[60]
D. Oncel, G. Oncel, A. Tastan, and B. Tamci, “Evaluation of coronary stent patency and in-stent restenosis with dual-source CT coronary angiography without heart rate control,” American Journal of Roentgenology, vol. 191, no. 1, pp. 56–63, 2008.
[61]
W. J. Yang, K. M. Chen, L. F. Pang et al., “High-definition computed tomography for coronary artery stent imaging: a phantom study,” Korean Journal of Radiology, vol. 13, pp. 20–26, 2012.
[62]
M. Hamon, L. Champ-Rigot, R. Morello, J. W. Riddell, and M. Hamon, “Diagnostic accuracy of in-stent coronary restenosis detection with multislice spiral computed tomography: a meta-analysis,” European Radiology, vol. 18, no. 2, pp. 217–225, 2008.
[63]
J. Rixe, S. Achenbach, D. Ropers et al., “Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography,” European Heart Journal, vol. 27, no. 21, pp. 2567–2572, 2006.
[64]
C. A. G. Van Mieghem, F. Cademartiri, N. R. Mollet et al., “Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound,” Circulation, vol. 114, no. 7, pp. 645–653, 2006.
[65]
C. Rist, F. von Ziegler, K. Nikolaou et al., “Assessment of coronary artery stent patency and restenosis using 64-slice computed tomography,” Academic Radiology, vol. 13, no. 12, pp. 1465–1473, 2006.
[66]
D. Oncel, G. Oncel, and A. Tastan, “Effectiveness of dual-source CT coronary angiography for the evaluation of coronary artery disease in patients with atrial fibrillation: initial experience,” Radiology, vol. 245, no. 3, pp. 703–711, 2007.
[67]
F. Cademartiri, J. D. Schuijf, F. Pugliese et al., “Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis,” Journal of the American College of Cardiology, vol. 49, no. 22, pp. 2204–2210, 2007.
[68]
M. Ehara, M. Kawai, J. F. Surmely et al., “Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography: comparison with invasive coronary angiography,” Journal of the American College of Cardiology, vol. 49, no. 9, pp. 951–959, 2007.
[69]
N. Carrabba, M. Bamoshmoosh, L. M. Carusi et al., “Usefulness of 64-slice multidetector computed tomography for detecting drug eluting in-stent restenosis,” American Journal of Cardiology, vol. 100, no. 12, pp. 1754–1758, 2007.
[70]
K. M. Das, A. A. El-Menyar, A. M. Salam et al., “Contrast-enhanced 64-section coronary multidetector CT angiography versus conventional coronary angiography for stent assessment,” Radiology, vol. 245, no. 2, pp. 424–432, 2007.
[71]
J. D. Schuijf, G. Pundziute, J. W. Jukema et al., “Evaluation of patients with previous coronary stent implantation with 64-section CT,” Radiology, vol. 245, no. 2, pp. 416–423, 2007.
[72]
I. Carbone, M. Francone, E. Algeri et al., “Non-invasive evaluation of coronary artery stent patency with retrospectively ECG-gated 64-slice CT angiography,” European Radiology, vol. 18, no. 2, pp. 234–243, 2008.
[73]
N. Manghat, R. Van Lingen, P. Hewson et al., “Usefulness of 64-detector row computed tomography for evaluation of intracoronary stents in symptomatic patients with suspected in-stent restenosis,” American Journal of Cardiology, vol. 101, no. 11, pp. 1567–1573, 2008.
[74]
H. S. Hecht, M. Zaric, V. Jelnin, L. Lubarsky, M. Prakash, and G. Roubin, “Usefulness of 64-detector computed tomographic angiography for diagnosing in-stent restenosis in native coronary arteries,” American Journal of Cardiology, vol. 101, no. 6, pp. 820–824, 2008.
[75]
K. Nakamura, N. Funabashi, M. Uehara et al., “Impairment factors for evaluating the patency of drug-eluting stents and bare metal stents in coronary arteries by 64-slice computed tomography versus conventional coronary angiography,” International Journal of Cardiology, vol. 130, no. 3, pp. 349–356, 2008.
[76]
G. Pontone, D. Andreini, A. L. Bartorelli et al., “Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective electrocardiogram triggering,” Journal of the American College of Cardiology, vol. 54, no. 4, pp. 346–355, 2009.
[77]
S. Haraldsdottir, T. Gudnason, A. F. Sigurdsson et al., “Diagnostic accuracy of 64-slice multidetector CT for detection of in-stent restenosis in an unselected, consecutive patient population,” European Journal of Radiology, vol. 76, no. 2, pp. 188–194, 2010.
[78]
G. D. E. Papini, F. Casolo, G. Di Leo et al., “In vivo assessment of coronary stents with 64-row multidetector computed tomography: analysis of metal artifacts,” Journal of Computer Assisted Tomography, vol. 34, no. 6, pp. 921–926, 2010.
[79]
M. J. Abdelkarim, N. Ahmadi, A. Gopal, Y. Hamirani, R. P. Karlsberg, and M. J. Budoff, “Noninvasive quantitative evaluation of coronary artery stent patency using 64-row multidetector computed tomography,” Journal of Cardiovascular Computed Tomography, vol. 4, no. 1, pp. 29–37, 2010.
[80]
J. J. Wykrzykowska, A. Arbab-Zadeh, G. Godoy et al., “Assessment of in-stent restenosis using 64-MDCT: analysis of the CORE-64 multicenter international trial,” American Journal of Roentgenology, vol. 194, no. 1, pp. 85–92, 2010.
[81]
D. Andreini, G. Pontone, A. L. Bartorelli et al., “High diagnostic accuracy of prospective ECG-gating 64-slice computed tomography coronary angiography for the detection of in-stent restenosis: In-stent restenosis assessment by low-dose MDCT,” European Radiology, vol. 21, no. 7, pp. 1430–1438, 2011.
[82]
J. Zhao, L. L. Zheng, and Y. Yang, “Evaluation of coronary artery in-stent patency using 64-slice computed tomography,” Coronary Artery Disease, vol. 22, pp. 540–552, 2011.
[83]
J. Zhang, M. Li, Z. Lu, J. Hang, J. Pan, and L. Sun, “In vivo evaluation of stent patency by 64-slice multidetector CT coronary angiography: shall we do it or not?” International Journal of Cardiovascular Imaging, vol. 28, pp. 651–658, 2012.
[84]
N. Carrabba, J. D. Schuijf, F. R. De Graaf et al., “Diagnostic accuracy of 64-slice computed tomography coronary angiography for the detection of in-stent restenosis: a meta-analysis,” Journal of Nuclear Cardiology, vol. 17, no. 3, pp. 470–478, 2010.
[85]
D. J. Kumbhani, C. P. Ingelmo, P. Schoenhagen, R. J. Curtin, S. D. Flamm, and M. Y. Desai, “Meta-analysis of diagnostic efficacy of 64-slice computed tomography in the evaluation of coronary in-stent restenosis,” American Journal of Cardiology, vol. 103, no. 12, pp. 1675–1681, 2009.
[86]
Z. Sun and A. M. D. Almutairi, “Diagnostic accuracy of 64 multislice CT angiography in the assessment of coronary in-stent restenosis: a meta-analysis,” European Journal of Radiology, vol. 73, no. 2, pp. 266–273, 2010.
[87]
P. K. Vanhoenacker, I. Decramer, O. Bladt et al., “Multidetector computed tomography angiography for assessment of in-stent restenosis: meta-analysis of diagnostic performance,” BMC Medical Imaging, vol. 8, p. 14, 2008.
[88]
F. Pugliese, A. C. Weustink, C. Van Mieghem et al., “Dual source coronary computed tomography angiography for detecting in-stent restenosis,” Heart, vol. 94, no. 7, pp. 848–854, 2008.
[89]
T. Pflederer, M. Marwan, A. Renz et al., “Noninvasive assessment of coronary in-stent restenosis by dual-source computed tomography,” American Journal of Cardiology, vol. 103, no. 6, pp. 812–817, 2009.
[90]
L. Zhao, Z. Zhang, Z. Fan, L. Yang, and J. Du, “Prospective versus retrospective ECG gating for dual source CT of the coronary stent: comparison of image quality, accuracy, and radiation dose,” European Journal of Radiology, vol. 77, no. 3, pp. 436–442, 2011.
[91]
J. Veselka, P. Cadova, P. Tomasov, A. Theodor, and D. Zemanek, “Dual-source CT angiography for detection and quantification of in-stent restenosis in the left main coronary artery: comparison with intracoronary ultrasound and coronary angiography,” Journal of Invasive Cardiology, vol. 23, pp. 460–464, 2011.
[92]
X. Zhang, L. Yang, J. Wu et al., “Diagnostic accuracy and its affecting factors of dual-source CT for assessment of coronary stents patency and in-stent restenosis,” Chinese Medical Journal, vol. 125, pp. 1936–1940, 2012.
[93]
F. R. De Graaf, J. D. Schuijf, J. E. Van Velzen et al., “Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography to noninvasively assess in-stent restenosis,” Investigative Radiology, vol. 45, no. 6, pp. 331–340, 2010.
[94]
T. Kubo, Y. Matsuo, Y. Ino et al., “Diagnostic accuracy of CT angiography to assess coronary stent thrombosis as determined by intravascular OCT,” JACC Cardiovasc Imaging, vol. 4, pp. 1040–1043, 2011.
[95]
A. J. Taylor, M. Cerqueira, J. M. Hodgson, et al., “ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance,” Circulation, vol. 122, pp. e525–e555, 2010.
[96]
S. H. Lee, J. S. Park, D. G. Shin et al., “Frequency of stent fracture as a cause of coronary restenosis after sirolimus-eluting stent implantation,” American Journal of Cardiology, vol. 100, no. 4, pp. 627–630, 2007.
[97]
J. H. Pang, D. Kim, N. Beohar, S. N. Meyers, D. Lloyd-Jones, and V. Yaghmai, “Detection of stent fractures: a comparison of 64-slice CT, conventional cine-angiography, and intravascular ultrasonography,” Academic Radiology, vol. 16, pp. 412–417, 2009.
[98]
H. B. Lim, G. Hur, S. Y. Kim et al., “Coronary stent fracture: detection with 64-section multidetector CT angiography in patients and in vitro,” Radiology, vol. 249, no. 3, pp. 810–819, 2008.
[99]
H. S. Hecht, S. Polena, V. Jelnin et al., “Stent gap by 64-detector computed tomographic angiography relationship to in-stent restenosis, fracture, and overlap failure,” Journal of the American College of Cardiology, vol. 54, no. 21, pp. 1949–1959, 2009.
[100]
M. J. Budoff, S. Achenbach, R. S. Blumenthal, et al., “Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology,” Circulation, vol. 114, no. 16, pp. 1761–1791, 2006.
[101]
D. B. Mark, D. S. Berman, M. J. Budoff et al., “ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents,” Journal of the American College of Cardiology, vol. 55, no. 23, pp. 2663–2699, 2010.
[102]
S. Achenbach, T. Goroll, M. Seltmann et al., “Detection of coronary artery stenoses by low-dose, prospectively ECG-triggered, high-pitch spiral coronary CT angiography,” JACC Cardiovascular Imaging, vol. 4, no. 4, pp. 328–337, 2011.
[103]
F. Wolf, S. Leschka, C. Loewe et al., “Coronary artery stent imaging with 128-slice dual-source CT using high-pitch spiral acquisition in a cardiac phantom: comparison with the sequential and low-pitch spiral mode,” European Radiology, vol. 20, no. 9, pp. 2084–2091, 2010.
[104]
T. A. Magalh?es, R. C. Cury, A. C. Pereira et al., “Additional value of dipyridamole stress myocardial perfusion by 64-row computed tomography in patients with coronary stents,” Journal of Cardiovascular Computed Tomography, vol. 5, pp. 449–458, 2011.
[105]
P. W. Serruys, Y. Onuma, J. A. Ormiston et al., “Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes,” Circulation, vol. 58, pp. 1578–1588, 2011.