全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Glycemic Control during Coronary Artery Bypass Graft Surgery

DOI: 10.5402/2012/292490

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hyperglycemia, which occurs in the perioperative period during cardiac surgery, has been shown to be associated with increased morbidity and mortality. The management of perioperative hyperglycemia during coronary artery bypass graft surgery and all cardiac surgical procedures has been the focus of intensive study in recent years. This report will paper the pathophysiology responsible for the detrimental effects of perioperative hyperglycemia during cardiac surgery, show how continuous insulin infusions in the perioperative period have improved outcomes, and discuss the results of trials designed to determine what level of a glycemic control is necessary to achieve optimal clinical outcomes. 1. Introduction The incidence of diabetes mellitus in patients undergoing coronary artery bypass graft (CABG) surgery continues to increase and it is now estimated that nearly 30–40% of CABG patients will have diabetes mellitus or the metabolic syndrome [1]. Patients with diabetes mellitus have had worse outcomes following CABG [2–4]. They have higher mortality and a higher incidence of renal failure, stroke, sternal wound infections, and increased need for inotropic support [5–8]. Their length of stay is prolonged and hospital costs are increased [9]. Furthermore, diabetic CABG patients are more likely to require a repeat revascularization procedure, have a 24% higher risk of readmission for cardiac-related issues, and a 44% higher risk for rehospitalization for any cause [10, 11]. These outcomes were thought to be irreversible since diabetic patients have more diffuse coronary disease, abnormal fibrinolytic and platelet function and impaired endothelial function which leads to lower graft patency and ultimately increased perioperative mortality, reduced long-term survival, and less freedom from recurrent ischemic events [12–15]. In this paper, we will show that by achieving glycemic control in patients with diabetes mellitus undergoing CABG surgery, perioperative morbidity and mortality can be reduced, long-term survival improved, and the incidence of recurrent ischemic events decreased. 2. Detrimental Effects of Hyperglycemia on the Cardiovascular System In order to understand the beneficial effects of glycemic control during CABG surgery in patients with hyperglycemia, it is important to understand the detrimental effects of hyperglycemia on the cardiovascular system. In the nonischemic myocardium, the primary energy substrate is free fatty acids [16]. However, during ischemia when free fatty acids cannot be metabolized, increased levels of free fatty acids can

References

[1]  P. M. Gorter, J. K. Olijhoek, Y. Van der Graaf, A. Algra, T. J. Rabelink, and F. L. J. Visseren, “Prevalence of the metabolic syndrome in patients with coronary heart disease, cerebrovascular disease, peripheral arterial disease or abdominal aortic aneurysm,” Atherosclerosis, vol. 173, no. 2, pp. 363–369, 2004.
[2]  K. A. Eagle, R. A. Guyton, R. Davidoff et al., “ACC/AHA 2004 guideline update for coronary artery bypass graft surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1999 Guidelines for Coronary Artery Bypass Graft Surgery),” Circulation, vol. 110, no. 14, pp. 340–437, 2004.
[3]  C. M. Mangano, L. S. Diamondstone, J. G. Ramsay, A. Aggarwal, A. Herskowitz, and D. T. Mangano, “Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group,” Annals of Internal Medicine, vol. 128, no. 3, pp. 194–203, 1998.
[4]  D. C. Charlesworth, D. S. Likosky, C. A. S. Marrin et al., “Development and validation of a prediction model for strokes after coronary artery bypass grafting,” Annals of Thoracic Surgery, vol. 76, no. 2, pp. 436–443, 2003.
[5]  R. A. Clough, B. J. Leavitt, J. R. Morton et al., “The effect of comorbid illness on mortality outcomes in cardiac surgery,” Archives of Surgery, vol. 137, no. 4, pp. 428–433, 2002.
[6]  B. J. Leavitt, L. Sheppard, C. Maloney et al., “Effect of diabetes and associated conditions on long-term survival after coronary artery bypass graft surgery,” Circulation, vol. 110, no. 11, pp. II41–II44, 2004.
[7]  N. Luciani, G. Nasso, M. Gaudino et al., “Coronary artery bypass grafting in type II diabetic patients: a comparison between insulin-dependent and non-insulin-dependent patients at short- and mid-term follow-up,” Annals of Thoracic Surgery, vol. 76, no. 4, pp. 1149–1154, 2003.
[8]  C. Kubal, A. K. Srinivasan, A. D. Grayson, B. M. Fabri, and J. A. C. Chalmers, “Effect of risk-adjusted diabetes on mortality and morbidity after coronary artery bypass surgery,” Annals of Thoracic Surgery, vol. 79, no. 5, pp. 1570–1576, 2005.
[9]  C. A. Estrada, J. A. Young, L. W. Nifong, and W. R. Chitwood, “Outcomes and perioperative hyperglycemia in patients with or without diabetes mellitus undergoing coronary artery bypass grafting,” Annals of Thoracic Surgery, vol. 75, no. 5, pp. 1392–1399, 2003.
[10]  J. Herlitz, G. B. Wognsen, H. Emanuelsson et al., “Mortality and morbidity in diabetic and nondiabetic patients during a 2- year period after coronary artery bypass grafting,” Diabetes Care, vol. 19, no. 7, pp. 698–703, 1996.
[11]  W. Whang and J. T. Bigger Jr., “Diabetes and outcomes of coronary artery bypass graft surgery in patients with severe left ventricular dysfunction: results from the CABG Patch Trial database,” Journal of the American College of Cardiology, vol. 36, no. 4, pp. 1166–1172, 2000.
[12]  Z. Szabó, E. H?kanson, and R. Svedjeholm, “Early postoperative outcome and medium-term survival in 540 diabetic and 2239 nondiabetic patients undergoing coronary artery bypass grafting,” Annals of Thoracic Surgery, vol. 74, no. 3, pp. 712–719, 2002.
[13]  Y. Cohen, I. Raz, G. Merin, and B. Mozes, “Comparison of factors associated with 30-day mortality after coronary artery bypass grafting in patients with versus without diabetes mellitus,” American Journal of Cardiology, vol. 81, no. 1, pp. 7–11, 1998.
[14]  J. L. Carson, P. M. Scholz, A. Y. Chen, E. D. Peterson, J. Gold, and S. H. Schneider, “Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery,” Journal of the American College of Cardiology, vol. 40, no. 3, pp. 418–423, 2002.
[15]  R. M. Jacoby and R. W. Nesto, “Acute myocardial infarction in the diabetic patient: pathophysiology, clinical course and prognosis,” Journal of the American College of Cardiology, vol. 20, no. 3, pp. 736–744, 1992.
[16]  L. H. Opie, “Effects of regional ischemia on metabolism of glucose and fatty acids. Relative rates of aerobic and anaerobic energy production during myocardial infarction and comparison with effects of anoxia,” Circulation Research, vol. 38, no. 5, pp. 52–74, 1976.
[17]  Q. Liu, J. C. Docherty, J. C. T. Rendell, A. S. Clanachan, and G. D. Lopaschuk, “High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation,” Journal of the American College of Cardiology, vol. 39, no. 4, pp. 718–725, 2002.
[18]  J. R. Sowers and M. Epstein, “Diabetes mellitus and associated hypertension, vascular disease, and nephropathy,” Hypertension, vol. 26, no. 6, pp. 869–879, 1995.
[19]  A. M. Schmidt, S. D. Yan, J. L. Wautier, and D. Stern, “Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis,” Circulation Research, vol. 84, no. 5, pp. 489–497, 1999.
[20]  H. Vlassara, “Recent progress in advanced glycation end products and diabetic complications,” Diabetes, vol. 46, no. 2, pp. S19–S25, 1997.
[21]  P. Dandena, A. Algada, P. Mohauty, et al., “Insulin inhibits intranuclear nuclear factor kappa B and simulates 1 kappa B in mononuclear cells in obese subjects: evidence for anti-inflammatory effect,” The Journal of Clinical Endocrinology and Metabolism, vol. 86, pp. 3257–3265, 2001.
[22]  B. Guerci, P. B?hme, A. Kearney-Schwartz, F. Zannad, and P. Drouin, “Endothelial dysfunction and type 2 diabetes. Part 2: altered endothelial function and the effects of treatments in type 2 diabetes mellitus,” Diabetes and Metabolism, vol. 27, no. 4 I, pp. 436–447, 2001.
[23]  J. Y. Park, N. Takahara, A. Gabriele et al., “Induction of endothelin-1 expression by glucose an effect of protein kinase C activation,” Diabetes, vol. 49, no. 7, pp. 1239–1248, 2000.
[24]  H. L. Lazar, L. Joseph, C. San Mateo et al., “Expression of inducible nitric oxide synthase in conduits used in patients with diabetes mellitus undergoing coronary revascularization,” Journal of Cardiac Surgery, vol. 25, no. 1, pp. 120–126, 2010.
[25]  T. J. Guzik, S. Mussa, D. Gastaldi et al., “Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase,” Circulation, vol. 105, no. 14, pp. 1656–1662, 2002.
[26]  G. Davi, I. Catalano, M. Averna et al., “Thromboxane biosynthesis and platelet function in type II diabetes mellitus,” The New England Journal of Medicine, vol. 322, no. 25, pp. 1769–1774, 1990.
[27]  R. Marfella, K. Esposito, R. Gionata, et al., “Circulating adhesion molecules in humans: role of hyperglycemia and hyperinsulinemia,” Circulation, vol. 201, pp. 2247–2251, 2000.
[28]  K. Suzuki and T. Kono, “Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 5, pp. 2542–2545, 1980.
[29]  M. G. Jeschke, D. Klein, U. Bolder, and R. Einspanier, “Insulin attenuates the systemic inflammatory response in endotoxemic rats,” Endocrinology, vol. 145, no. 9, pp. 4084–4093, 2004.
[30]  L. Langovche, I. Vanhorebeek, D. Vlaselaers, et al., “Intensive insulin therapy protects the endothelium of critically ill patients,” The Journal of Clinical Investigation, vol. 115, pp. 1177–1186, 2005.
[31]  A. K. Jonassen, M. N. Sack, O. D. Mj?s, and D. M. Yellon, “Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling,” Circulation Research, vol. 89, no. 12, pp. 1191–1198, 2001.
[32]  F. Gao, E. Gao, T. L. Yue et al., “Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation,” Circulation, vol. 105, no. 12, pp. 1497–1502, 2002.
[33]  S. Svensson, R. Svedjeholm, R. Ekroth et al., “Trauma metabolism and the heart. Uptake of substrates and effects of insulin early after cardiac operations,” Journal of Thoracic and Cardiovascular Surgery, vol. 99, no. 6, pp. 1063–1073, 1990.
[34]  V. Rao, F. Merante, R. D. Weisel et al., “Insulin stimulates pyruvate dehydrogenase and protects human ventricular cardiomyocytes from simulated ischemia,” Journal of Thoracic and Cardiovascular Surgery, vol. 116, no. 3, pp. 485–494, 1998.
[35]  P. Dandona, A. Aljada, P. Mohanty et al., “Insulin inhibits intranuclear nuclear factor κB and stimulates IκB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect?” The Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 7, pp. 3257–3265, 2001.
[36]  S. E. Capes, D. Hunt, K. Malmberg, and H. C. Gerstein, “Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview,” The Lancet, vol. 355, no. 9206, pp. 773–778, 2000.
[37]  K. Foo, J. Cooper, A. Deaner et al., “A single serum glucose measurement predicts adverse outcomes across the whole range of acute coronary syndromes,” Heart, vol. 89, no. 5, pp. 512–516, 2003.
[38]  J. J. Meier, S. Deifuss, A. Klamann, V. Launhardt, W. H. Schmiegel, and M. A. Nauck, “Plasma glucose at hospital admission and previous metabolic control determine myocardial infarct size and survival in patients with and without type 2 diabetes: The Langendreer Myocardial Infarction and Blood Glucose in Diabetic Patients Assessment (LAMBDA),” Diabetes Care, vol. 28, no. 10, pp. 2551–2553, 2005.
[39]  N. N. Wahab, E. A. Cowden, N. J. Pearce, M. J. Gardner, H. Merry, and J. L. Cox, “Is blood glucose an independent predictor of mortality in acute myocardial infarction in the thrombolytic era?” Journal of the American College of Cardiology, vol. 40, no. 10, pp. 1748–1754, 2002.
[40]  I. Stranders, M. Diamant, R. E. van Gelder et al., “Admission blood glucose level as risk indicator of death after myocardial infarction in patients with and without diabetes mellitus,” Archives of Internal Medicine, vol. 164, no. 9, pp. 982–988, 2004.
[41]  M. Kosiborod, S. S. Rathore, S. E. Inzucchi et al., “Admission glucose and mortality in elderly patients hospitalized with acute myocardial infarction: implications for patients with and without recognized diabetes,” Circulation, vol. 111, no. 23, pp. 3078–3086, 2005.
[42]  S. R. Mehta, “Effect of glucose-insulin-potassium infusion on mortality in patients with acute ST-segment elevation myocardial infarction: the CREATE-ECLA randomized controlled trial,” The Journal of the American Medical Association, vol. 293, no. 4, pp. 437–446, 2005.
[43]  N. W. Cheung, V. W. Wong, and M. Mclean, “The hyperglycemia: intensive insulin infusion in infarction (HI-5) study: a randomized controlled trial of insulin infusion therapy for myocardial infarction,” Diabetes Care, vol. 29, no. 4, pp. 765–770, 2006.
[44]  M. Suleiman, H. Hammerman, M. Boulos et al., “Fasting glucose is an important independent risk factor for 30-day mortality in patients with acute myocardial infarction: a prospective study,” Circulation, vol. 111, no. 6, pp. 754–760, 2005.
[45]  A. M. Svensson, D. K. McGuire, P. Abrahamsson, and M. Dellborg, “Association between hyper- and hypoglycaemia and 2 year all-cause mortality risk in diabetic patients with acute coronary events,” European Heart Journal, vol. 26, no. 13, pp. 1255–1261, 2005.
[46]  A. Goyal, K. W. Mahaffey, J. Garg et al., “Prognostic significance of the change in glucose level in the first 24 h after acute myocardial infarction: results from the CARDINAL study,” European Heart Journal, vol. 27, no. 11, pp. 1289–1297, 2006.
[47]  T. Doenst, D. Wijeysundera, K. Karkouti et al., “Hyperglycemia during cardiopulmonary bypass is an independent risk factor for mortality in patients undergoing cardiac surgery,” Journal of Thoracic and Cardiovascular Surgery, vol. 130, no. 4, pp. 1144.e1–1144.e8, 2005.
[48]  L. H. Fish, T. W. Weaver, A. L. Moore, and L. G. Steel, “Value of postoperative blood glucose in predicting complications and length of stay after coronary artery bypass grafting,” American Journal of Cardiology, vol. 92, no. 1, pp. 74–76, 2003.
[49]  F. A. McAlister, J. Man, L. Bistritz, H. Amad, and P. Tandon, “Diabetes and coronary artery bypass surgery: an examination of perioperative glycemic control and outcomes,” Diabetes Care, vol. 26, no. 5, pp. 1518–1524, 2003.
[50]  A. Székely, J. Levin, Y. Miao et al., “Impact of hyperglycemia on perioperative mortality after coronary artery bypass graft surgery,” Journal of Thoracic and Cardiovascular Surgery, vol. 142, no. 2, pp. 430–437, 2011.
[51]  S. A. Imran, T. P. P. Ransom, K. J. Buth et al., “Impact of admission serum glucose level on in-hospital outcomes following coronary artery bypass grafting surgery,” Canadian Journal of Cardiology, vol. 26, no. 3, pp. 151–154, 2010.
[52]  A. E. Duncan, A. Abd-Elsayed, A. Maheshwari, M. Xu, E. Soltesz, and C. G. Koch, “Role of intraoperative and postoperative blood glucose concentrations in predicting outcomes after cardiac surgery,” Anesthesiology, vol. 112, no. 4, pp. 860–871, 2010.
[53]  R. E. Anderson, K. Klerdal, T. Ivert, N. Hammar, G. Barr, and A. ?wall, “Are even impaired fasting blood glucose levels preoperatively associated with increased mortality after CABG surgery?” European Heart Journal, vol. 26, no. 15, pp. 1513–1518, 2005.
[54]  D. Sodi-Pollares, M. D. Testelli, B. L. Fisleder, et al., “Effects of an intravenous infusion of a potassium-glucose-insulin solution on the electrocardiographic signs of myocardial infarction,” American Journal of Cardiology, vol. 5, pp. 166–181, 1965.
[55]  Medical Research Council Working Party, “Potassium, glucose and insulin treatment for acute myocardial infarction,” The Lancet, vol. 2, pp. 1355–1360, 1968.
[56]  H. L. Lazar, X. Zhang, S. Rivers, S. Bernard, and R. J. Shemin, “Limiting ischemic myocardial damage using glucose-insulin-potassium solutions,” Annals of Thoracic Surgery, vol. 60, no. 2, pp. 411–416, 1995.
[57]  H. L. Lazar, G. Philippides, C. Fitzgerald et al., “Glucose-insulin-potassium solutions enhance recovery after urgent coronary artery bypass grafting,” Journal of Thoracic and Cardiovascular Surgery, vol. 113, no. 2, pp. 354–362, 1997.
[58]  D. W. Quinn, D. Pagano, R. S. Bonser et al., “Improved myocardial protection during coronary artery surgery with glucose-insulin-potassium: a randomized controlled trial,” Journal of Thoracic and Cardiovascular Surgery, vol. 131, no. 1, pp. 34–42, 2006.
[59]  K. Malmberg, L. Rydén, S. Efendic et al., “Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year,” Journal of the American College of Cardiology, vol. 26, no. 1, pp. 57–65, 1995.
[60]  K. Malmberg, “Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus,” British Medical Journal, vol. 314, no. 7093, pp. 1512–1515, 1997.
[61]  H. L. Lazar, S. R. Chipkin, C. A. Fitzgerald, Y. Bao, H. Cabral, and C. S. Apstein, “Tight glycemic control in diabetic coronary artery bypass graft patients improves perioperative outcomes and decreases recurrent ischemic events,” Circulation, vol. 109, no. 12, pp. 1497–1502, 2004.
[62]  A. P. Furnary, G. Gao, G. L. Grunkemeier et al., “Continuous insulin infusion reduces mortality in patients with diabetes undergoing coronary artery bypass grafting,” Journal of Thoracic and Cardiovascular Surgery, vol. 125, no. 5, pp. 1007–1021, 2003.
[63]  A. P. Furnary, Y. Wu, and S. O. Bookin, “Effect of hyperglycemia and continuous intravenous insulin infusions on outcomes of cardiac surgical procedures: The Portland Diabetic Project,” Endocrine Practice, vol. 10, supplement 2, pp. 21–33, 2004.
[64]  S. H. Golden, C. Peart-Vigilance, W. H. L. Kao, and F. L. Brancati, “Perioperative glycemic control and the risk of infectious complications in a cohort of adults with diabetes,” Diabetes Care, vol. 22, no. 9, pp. 1408–1414, 1999.
[65]  K. J. Zerr, A. P. Furnary, G. L. Grunkemeier, S. Bookin, V. Kanhere, and A. Starr, “Glucose control lowers the risk of wound infection in diabetics after open heart operations,” Annals of Thoracic Surgery, vol. 63, no. 2, pp. 356–361, 1997.
[66]  L. A. Hruska, J. M. Smith, M. P. Hendy, V. L. Fritz, S. McAdams, and J. Rusche, “Continuous insulin infusion reduces infectious complications in diabetics following coronary surgery,” Journal of Cardiac Surgery, vol. 20, no. 5, pp. 403–407, 2005.
[67]  A. J. Rassias, C. A. S. Marrin, J. Arruda, P. K. Whalen, M. Beach, and M. P. Yeager, “Insulin infusion improves neutrophil function in diabetic cardiac surgery patients,” Anesthesia and Analgesia, vol. 88, no. 5, pp. 1011–1016, 1999.
[68]  G. Van den Berghe, P. Wouters, F. Weekers et al., “Intensive insulin therapy in critically ill patients,” The New England Journal of Medicine, vol. 345, no. 19, pp. 1359–1367, 2001.
[69]  C. D'Alessandro, P. Leprince, J. L. Golmard et al., “Strict glycemic control reduces EuroSCORE expected mortality in diabetic patients undergoing myocardial revascularization,” Journal of Thoracic and Cardiovascular Surgery, vol. 134, no. 1, pp. 29–37, 2007.
[70]  J. Butterworth, L. E. Wagenknecht, C. Legault et al., “Attempted control of hyperglycemia during cardiopulmonary bypass fails to improve neurologic or neurobehavioral outcomes in patients without diabetes mellitus undergoing coronary artery bypass grafting,” Journal of Thoracic and Cardiovascular Surgery, vol. 130, no. 5, pp. 1319–1325, 2005.
[71]  G. Y. Gandhi, G. A. Nuttall, M. D. Abel et al., “Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: a randomized trial,” Annals of Internal Medicine, vol. 146, no. 4, pp. 233–243, 2007.
[72]  S. M. Alexanian, M. E. McDonnell, and S. Akhtar, “Creating a perioperative glycemic control program,” Anesthesiology Research and Practice, vol. 46, pp. 59–74, 2011.
[73]  M. E. McDonnell, S. M. Alexanian, L. White, and H. L. Lazar, “A primer for achieving glycemic control in the cardiac surgical patient,” Journal of Cardiac Surgery, vol. 27, pp. 470–477, 2012.
[74]  The International Expert Committee, “International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes,” Diabetes Care, vol. 32, no. 7, pp. 1327–1334, 2009.
[75]  S. J. Friedberg, Y. W. F. Lam, J. J. Blum, and R. I. Gregerman, “Insulin absorption: a major factor in apparent insulin resistance and the control of type 2 diabetes mellitus,” Metabolism, vol. 55, no. 5, pp. 614–619, 2006.
[76]  P. Varghese, V. Gleason, R. Sorokin, C. Senholzi, S. Jabbour, and J. E. Gottlieb, “Hypoglycemia in hospitalized patients treated with antihyperglycemic agents,” Journal of Hospital Medicine, vol. 2, no. 4, pp. 234–240, 2007.
[77]  M. Kosiborod, S. E. Inzucchi, A. Goyal et al., “Relationship between spontaneous and iatrogenic hypoglycemia and mortality in patients hospitalized with acute myocardial infarction,” The Journal of the American Medical Association, vol. 301, no. 15, pp. 1556–1564, 2009.
[78]  D. J. Rubin, D. Rybin, G. Doror, et al., “Weight-based, insulin dose-related hypoglycemia in hospitalized patients with diabetes,” Diabetes Care, vol. 34, pp. 1723–1728, 2011.
[79]  M. J. London, G. K. Grunwald, A. L. W. Shroyer, and F. L. Grover, “Association of fast-track cardiac management and low-dose to moderate-dose glucocorticoid administration with perioperative hyperglycemia,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 14, no. 6, pp. 631–638, 2000.
[80]  M. A. Chaney, M. P. Nikolov, B. P. Blakeman, and M. Bakhos, “Attempting to maintain normoglycemia during cardiopulmonary bypass with insulin may initiate postoperative hypoglycemia,” Anesthesia and Analgesia, vol. 89, no. 5, pp. 1091–1095, 1999.
[81]  H. L. Lazar, M. McDonnell, S. R. Chipkin et al., “The Society of Thoracic Surgeons Practice Guideline Series: blood glucose management during adult cardiac surgery,” Annals of Thoracic Surgery, vol. 87, no. 2, pp. 663–669, 2009.
[82]  P. A. Goldberg, M. D. Siegel, R. S. Sherwin et al., “Implementation of a safe and effective insulin infusion protocol in a medical intensive care unit,” Diabetes Care, vol. 27, no. 2, pp. 461–467, 2004.
[83]  A. Krikorian, F. Ismail-Beigi, and E. S. Moghissi, “Comparisons of different insulin infusion protocols: a review of recent literature,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 2, pp. 198–204, 2010.
[84]  A. Donihi, R. Rea, L. Haas, et al., “Safety and effectiveness of a standardized 80–150 mg/dl iv insulin infusion protocol in the Medical Intensive Care Unit: >11, 000 hours of experience,” Diabetes, vol. 55, abstract 459, 2006.
[85]  P. C. Davidson, R. D. Steed, and B. W. Bode, “Glucommander: a computer-directed intravenous insulin system shown to be safe, simple, and effective in 120,618 h of operation,” Diabetes Care, vol. 28, no. 10, pp. 2418–2423, 2005.
[86]  R. Juneja, C. Roudebush, N. Kumar et al., “Utilization of a computerized intravenous insulin infusion program to control blood glucose in the intensive care unit,” Diabetes Technology and Therapeutics, vol. 9, no. 3, pp. 232–240, 2007.
[87]  C. A. Newton, D. Smiley, B. W. Bode et al., “A comparison study of continuous insulin infusion protocols in the medical intensive care unit: computer-guided vs. standard column-based algorithms,” Journal of Hospital Medicine, vol. 5, no. 8, pp. 432–437, 2010.
[88]  A. J. DeSantis, L. R. Schmeltz, K. Schmidt et al., “Inpatient management of hyperglycemia: the northwestern experience,” Endocrine Practice, vol. 12, no. 5, pp. 491–505, 2006.
[89]  R. S. Rea, A. C. Donihi, M. Bobeck et al., “Implementing an intravenous insulin infusion protocol in the intensive care unit,” American Journal of Health-System Pharmacy, vol. 64, no. 4, pp. 385–395, 2007.
[90]  R. Juneja, S. A. Foster, D. Whiteman, and J. L. Fahrbach, “The nuts and bolts of subcutaneous insulin therapy in non-critical care hospital settings,” Postgraduate Medicine, vol. 122, no. 1, pp. 153–162, 2010.
[91]  D. Smiley, M. Rhee, L. Peng et al., “Safety and efficacy of continuous insulin infusion in noncritical care settings,” Journal of Hospital Medicine, vol. 5, no. 4, pp. 212–217, 2010.
[92]  K. Dungan, J. Chapman, S. S. Braithwaite, and J. Buse, “Glucose measurement: confounding issues in setting targets for inpatient management,” Diabetes Care, vol. 30, no. 2, pp. 403–409, 2007.
[93]  M. G. Scott, D. E. Bruns, J. C. Boyd, and D. B. Sacks, “Tight glucose control in the intensive care unit: are glucose meters up to the task?” Clinical Chemistry, vol. 55, no. 1, pp. 18–20, 2009.
[94]  E. S. Moghissi, M. T. Korytkowski, M. DiNardo et al., “American association of clinical endocrinologists and american diabetes association consensus statement on inpatient glycemic control,” Endocrine Practice, vol. 15, no. 4, pp. 353–369, 2009.
[95]  S. Kanji, J. Buffie, B. Hutton et al., “Reliability of point-of-care testing for glucose measurement in critically ill adults,” Critical Care Medicine, vol. 33, no. 12, pp. 2778–2785, 2005.
[96]  F. Avanzini, G. Marelli, W. Donzelli, et al., “Transition from intravenous to subcutaneous insulin: effectiveness and safety of a standardized protocol and predictors of outcome in patients with acute coronary syndrome,” Diabetes Care, vol. 34, pp. 1445–1450, 2011.
[97]  L. R. Schmeltz, A. J. DeSantis, K. Schmidt et al., “Conversion of intravenous insulin infusions to subcutaneously administered insulin glargine in patients with hyperglycemia,” Endocrine Practice, vol. 12, no. 6, pp. 641–650, 2006.
[98]  S. Clement, S. S. Braithwaite, M. F. Magee et al., “Management of diabetes and hyperglycemia in hospitals,” Diabetes Care, vol. 27, no. 5, pp. 553–591, 2004.
[99]  S. A. McClave, R. G. Martindale, V. W. Vanek et al., “Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.),” Journal of Parenteral and Enteral Nutrition, vol. 33, no. 3, pp. 277–316, 2009.
[100]  J. A. Mazurek, S. M. Hailpern, T. Goring, and C. Nordin, “Prevalence of hemoglobin A1c greater than 6.5% and 7.0% among hospitalized patients without known diagnosis of diabetes at an Urban Inner City Hospital,” The Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 3, pp. 1344–1348, 2010.
[101]  D. Baldwin, G. Villanueva, R. McNutt, and S. Bhatnagar, “Eliminating inpatient sliding-scale insulin: a reeducation project with medical house staff,” Diabetes Care, vol. 28, no. 5, pp. 1008–1011, 2005.
[102]  L. S. Greci, M. Kailasam, S. Malkani et al., “Utility of HbA1c levels for diabetes case finding in hospitalized patients with hyperglycemia,” Diabetes Care, vol. 26, no. 4, pp. 1064–1068, 2003.
[103]  The NICE-SUGAR Study Investigators, S. Finfer, D. R. Chittock, et al., “Intensive versus conventional glucose control in critically ill patients,” The New England Journal of Medicine, vol. 360, pp. 1283–1297, 2009.
[104]  J. Hermanides, T. M. Vriesendorp, R. J. Bosman, D. F. Zandstra, J. B. Hoekstra, and J. H. Devries, “Glucose variability is associated with intensive care unit mortality,” Critical Care Medicine, vol. 38, no. 3, pp. 838–842, 2010.
[105]  J. C. Preiser and P. Devos, “Clinical experience with tight glucose control by intensive insulin therapy,” Critical Care Medicine, vol. 35, no. 9, supplement, pp. S503–S507, 2007.
[106]  Y. Ohkubo, H. Kishikawa, E. Araki et al., “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Research and Clinical Practice, vol. 28, no. 2, pp. 103–117, 1995.
[107]  Action to control Cardiovascular Risk in Diabetes Study Group, H. C. Gerstein, M. E. Miller, et al., “Effects of intensive glucose lowering in type 2 diabetes,” The New England Journal of Medicine, vol. 358, pp. 2545–2559, 2008.
[108]  The UK Prospective Diabetes Study (UKPDS) Group, “Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34),” The Lancet, vol. 352, pp. 854–865, 1993.
[109]  ADVANCE Collaborative Group, A. Patel, A. MacMahond, et al., “Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes,” The New England Journal of Medicine, vol. 358, pp. 2560–2572, 2008.
[110]  W. Duckworth, C. Abraita, T. Moritz, et al., “Intensive glucose control and complications in American veterans with type 2 diabetes,” The New England Journal of Medicine, vol. 360, pp. 129–139, 2009.
[111]  S. Zoungas, A. Patel, J. Chalmers, et al., “Severe hypoglycemia and risks of vascular events and death,” The New England Journal of Medicine, vol. 363, pp. 1410–1416, 2010.
[112]  G. Van den Berghe, A. Wilmer, G. Hermans et al., “Intensive insulin therapy in the medical ICU,” The New England Journal of Medicine, vol. 354, no. 5, pp. 449–461, 2006.
[113]  F. M. Bronkhurst, C. Engel, F. Bloos, et al., “Intensive insulin therapy and pentastarch resuscitation in severe sepsis,” The New England Journal of Medicine, vol. 358, pp. 125–139, 2008.
[114]  H. L. Lazar, M. M. McDonnell, S. Chipkin, et al., “Effects of aggressive vs moderate glycemic control on clinical outcomes in diabetic coronary artery bypass graft patients,” Annals of Surgery, vol. 254, no. 3, pp. 458–464, 2011.
[115]  C. M. Bhamidipati, D. J. Lapar, G. J. Stukenborg et al., “Superiority of moderate control of hyperglycemia to tight control in patients undergoing coronary artery bypass grafting,” Journal of Thoracic and Cardiovascular Surgery, vol. 141, no. 2, pp. 543–551, 2011.
[116]  A. Qaseem, L. L. Humphrey, R. Chou, V. Snow, and P. Shekelle, “Use of intensive insulin therapy for the management of glycemic control in hospitalized patients: a clinical practice guideline from the American College of Physicians,” Annals of Internal Medicine, vol. 154, no. 4, pp. 260–267, 2011.
[117]  M. E. Halkos, J. D. Puskas, O. M. Lattouf et al., “Elevated preoperative hemoglobin A1c level is predictive of adverse events after coronary artery bypass surgery,” Journal of Thoracic and Cardiovascular Surgery, vol. 136, no. 3, pp. 631–640, 2008.
[118]  M. E. Halkos, O. M. Lattouf, J. D. Puskas et al., “Elevated preoperative hemoglobin A1c level is associated with reduced with long-term survival after coronary artery bypass surgery,” Annals of Thoracic Surgery, vol. 86, no. 5, pp. 1431–1437, 2008.
[119]  H. Lazar, M. McDonnell, C. Fitzgerald, et al., “HbA1c is not predictive of adverse outcomes in diabetic patients following coronary artery bypass graft surgery when perioperative glycemic control is achieved,” submitted.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133