This work aims at characterizing endoscope biofilm-isolated (PAI) and reference strain P. aeruginosa (PA) adhesion, biofilm formation and sensitivity to antibiotics. The recovery ability of the biofilm-growing bacteria subjected to intermittent antibiotic pressure (ciprofloxacin (CIP) and gentamicin (GM)), as well as the development of resistance towards antibiotics and benzalkonium chloride (BC), were also determined. The capacity of both strains to develop biofilms was greatly impaired in the presence of CIP and GM. Sanitization was not complete allowing biofilm recovery after the intermittent cycles of antibiotic pressure. The environmental pressure exerted by CIP and GM did not develop P. aeruginosa resistance to antibiotics nor cross-resistance towards BC. However, data highlighted that none of the antimicrobials led to complete biofilm eradication, allowing the recovery of the remaining adhered population possibly due to the selection of persister cells. This feature may lead to biofilm recalcitrance, reinforcement of bacterial attachment, and recolonization of other sites. 1. Introduction Pseudomonas aeruginosa is an opportunistic pathogenic bacterium [1] widely investigated for its high incidence and extraordinary ability to form strong biofilms in clinical equipment, medical devices, and wounds [2, 3]. This microorganism is commonly associated with nosocomial infections and is a leading cause of severe and life-threatening infections, especially in immunosuppressed hosts [4]. P. aeruginosa is one of the most common microorganisms transferred by bronchoscopes, being the most frequent in gastrointestinal endoscopy [5]. Flexible endoscopes undergo repeated rounds of patient use and reprocessing. Studies related to endoscope contamination have reported the presence of biofilms on the inner surface of endoscope channels [6, 7], highlighting the importance of effective measures for cleaning and disinfection in endoscope reprocessing. Biofilm removal is a crucial step to prevent lapses in reprocessing, being thus of clinical relevance in endoscopy [5, 8]. Biofilms represent a reservoir of pathogenic bacteria that can detach, resume their planktonic state, and contaminate new surfaces and patients. Moreover, microbial biofilms are notorious for their high level of resistance towards antibiotic and biocide treatments [9]. Bacteria within biofilms can easily live in the presence of high antibiotic concentrations similar to the ones that are prescribed during the course of therapies [10, 11]. Biofilm resistance mechanisms involve not only the
References
[1]
S. de Bentzmann and P. Plésiat, “The Pseudomonas aeruginosa opportunistic pathogen and human infections,” Environmental Microbiology, vol. 13, no. 7, pp. 1655–1665, 2011.
[2]
J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science, vol. 284, no. 5418, pp. 1318–1322, 1999.
[3]
K. E. Hill, S. Malic, R. McKee et al., “An in vitro model of chronic wound biofilms to test wound dressings and assess antimicrobial susceptibilities,” Journal of Antimicrobial Chemotherapy, vol. 65, no. 6, pp. 1195–1206, 2010.
[4]
T. B. May, D. Shinabarger, R. Maharaj et al., “Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients,” Clinical Microbiology Reviews, vol. 4, no. 2, pp. 191–206, 1991.
[5]
A. J. Buss, M. H. Been, R. P. Borgers et al., “Endoscope disinfection and its pitfalls-requirement for retrograde surveillance cultures,” Endoscopy, vol. 40, no. 4, pp. 327–332, 2008.
[6]
Y. Fang, Z. Shen, L. Li et al., “A study of the efficacy of bacterial biofilm cleanout for gastrointestinal endoscopes,” World Journal of Gastroenterology, vol. 16, no. 8, pp. 1019–1024, 2010.
[7]
J. Kovaleva, J. E. Degener, and H. C. van der Mei, “Mimicking disinfection and drying of biofilms in contaminated endoscopes,” Journal of Hospital Infection, vol. 76, no. 4, pp. 345–350, 2010.
[8]
K. Marion, J. Freney, G. James, E. Bergeron, F. N. R. Renaud, and J. W. Costerton, “Using an efficient biofilm detaching agent: an essential step for the improvement of endoscope reprocessing protocols,” Journal of Hospital Infection, vol. 64, no. 2, pp. 136–142, 2006.
[9]
P. Gilbert, J. R. Das, M. V. Jones, and D. G. Allison, “Assessment of resistance towards biocides following the attachment of micro-organisms to, and growth on, surfaces,” Journal of Applied Microbiology, vol. 91, no. 2, pp. 248–254, 2001.
[10]
T. D?rr, K. Lewis, and M. Vuli?, “SOS response induces persistence to fluoroquinolones in Escherichia coli,” PLoS Genetics, vol. 5, no. 12, Article ID e1000760, 2009.
[11]
A. D. Russell, “Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations,” Lancet Infectious Diseases, vol. 3, no. 12, pp. 794–803, 2003.
[12]
P. Gilbert, A. J. McBain, and A. H. Rickard, “Formation of microbial biofilm in hygienic situations: a problem of control,” International Biodeterioration and Biodegradation, vol. 51, no. 4, pp. 245–248, 2003.
[13]
P. S. Stewart, T. Griebe, R. Srinivasan et al., “Comparison of respiratory activity and culturability during monochloramine disinfection of binary population biofilms,” Applied and Environmental Microbiology, vol. 60, no. 5, pp. 1690–1692, 1994.
[14]
P. Gilbert, P. J. Collier, and M. R. W. Brown, “Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and strigent response,” Antimicrobial Agents and Chemotherapy, vol. 34, no. 10, pp. 1865–1868, 1990.
[15]
D. G. Davies, M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Greenberg, “The involvement of cell-to-cell signals in the development of a bacterial biofilm,” Science, vol. 280, no. 5361, pp. 295–298, 1998.
[16]
I. Foley, P. Marsh, E. M. H. Wellington, A. W. Smith, and M. R. W. Brown, “General stress response master regulator rpoS is expressed in human infection: a possible role in chronicity,” Journal of Antimicrobial Chemotherapy, vol. 43, no. 1, pp. 164–165, 1999.
[17]
J. Y. Maillard, “Bacterial resistance to biocides in the healthcare environment: should it be of genuine concern?” Journal of Hospital Infection, vol. 65, no. 2, pp. 60–72, 2007.
[18]
A. D. Russell, “Bacterial resistance to disinfectants: present knowledge and future problems,” Journal of Hospital Infection, vol. 43, supplement 1, pp. S57–S68, 1999.
[19]
R. J. W. Lambert, J. Joynson, and B. Forbes, “The relationships and susceptibilities of some industrial, laboratory and clinical isolates of Pseudomonas aeruginosa to some antibiotics and biocides,” Journal of Applied Microbiology, vol. 91, no. 6, pp. 972–984, 2001.
[20]
C. van Delden and B. H. Iglewski, “Cell-to-cell signaling and Pseudomonas aeruginosa infections,” Emerging Infectious Diseases, vol. 4, no. 4, pp. 551–560, 1998.
[21]
G. Agarwal, A. Kapil, S. K. Kabra, B. K. Das, and S. N. Dwivedi, “In vitro efficacy of ciprofloxacin and gentamicin against a biofilm of Pseudomonas aeruginosa and its free-living forms,” National Medical Journal of India, vol. 18, no. 4, pp. 184–186, 2005.
[22]
J. Sjollema, H. J. Busscher, and A. H. Weerkamp, “Real-time enumeration of adhering microorganisms in a parallel plate flow cell using automated image analysis,” Journal of Microbiological Methods, vol. 9, no. 2, pp. 73–78, 1989.
[23]
S. Stepanovi?, D. Vukovi?, I. Daki?, B. Savi?, and M. ?vabi?-Vlahovi?, “A modified microtiter-plate test for quantification of staphylococcal biofilm formation,” Journal of Microbiological Methods, vol. 40, no. 2, pp. 175–179, 2000.
[24]
M. G. Stevens and S. C. Olsen, “Comparative analysis of using MTT and XTT in colorimetric assays for quantitating bovine neutrophil bactericidal activity,” Journal of Immunological Methods, vol. 157, no. 1-2, pp. 225–231, 1993.
[25]
R. M. Donlan, “Biofilms on central venous catheters: is eradication possible?” Current Topics in Microbiology and Immunology, vol. 322, pp. 133–161, 2008.
[26]
D. P. Bakker, B. R. Postmus, H. J. Busscher, and H. C. van der Mei, “Bacterial strains isolated from different niches can exhibit different patterns of adhesion to substrata,” Applied and Environmental Microbiology, vol. 70, no. 6, pp. 3758–3760, 2004.
[27]
M. F. Loughlin, M. V. Jones, and P. A. Lambert, “Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics,” Journal of Antimicrobial Chemotherapy, vol. 49, no. 4, pp. 631–639, 2002.
[28]
D. M. Ramsey and D. J. Wozniak, “Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis,” Molecular Microbiology, vol. 56, no. 2, pp. 309–322, 2005.
[29]
J. L. del Pozo and R. Patel, “The challenge of treating biofilm-associated bacterial infections,” Clinical Pharmacology and Therapeutics, vol. 82, no. 2, pp. 204–209, 2007.
[30]
L. Hall-Stoodley and P. Stoodley, “Biofilm formation and dispersal and the transmission of human pathogens,” Trends in Microbiology, vol. 13, no. 1, pp. 7–10, 2005.
[31]
E. Riera, M. D. Maciá, A. Mena et al., “Anti-biofilm and resistance suppression activities of CXA-101 against chronic respiratory infection phenotypes of Pseudomonas aeruginosastrain PAO1,” Journal of Antimicrobial Chemotherapy, vol. 65, no. 7, pp. 1399–1404, 2010.
[32]
L. R. Hoffman, D. A. D'Argenio, M. J. MacCoss, Z. Zhang, R. A. Jones, and S. I. Miller, “Aminoglycoside antibiotics induce bacterial biofilm formation,” Nature, vol. 436, no. 7054, pp. 1171–1175, 2005.
[33]
J. Majtán, L. Majtánová, M. Xu, and V. Majtán, “In vitro effect of subinhibitory concentrations of antibiotics on biofilm formation by clinical strains of Salmonella enterica serovar Typhimurium isolated in Slovakia,” Journal of Applied Microbiology, vol. 104, no. 5, pp. 1294–1301, 2008.
[34]
A. K. Marr, J. Overhage, M. Bains, and R. E. W. Hancock, “The Lon protease of Pseudomonas aeruginosa is induced by aminoglycosides and is involved in biofilm formation and motility,” Microbiology, vol. 153, no. 2, pp. 474–482, 2007.
[35]
M. Herzberg and M. Elimelech, “Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa,” ISME Journal, vol. 2, no. 2, pp. 180–194, 2008.
[36]
M. M. Ramsey and M. Whiteley, “Pseudomonas aeruginosa attachment and biofilm development in dynamic environments,” Molecular Microbiology, vol. 53, no. 4, pp. 1075–1087, 2004.
[37]
R. J. Gillis and B. H. Iglewski, “Azithromycin retards Pseudomonas aeruginosa biofilm formation,” Journal of Clinical Microbiology, vol. 42, no. 12, pp. 5842–5845, 2004.
[38]
J. J. Harrison, R. J. Turner, and H. Ceri, “Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa,” Environmental Microbiology, vol. 7, no. 7, pp. 981–994, 2005.
[39]
M. C. Walters, F. Roe, A. Bugnicourt, M. J. Franklin, and P. S. Stewart, “Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 1, pp. 317–323, 2003.
[40]
K. Lewis, “Persister cells, dormancy and infectious disease,” Nature Reviews Microbiology, vol. 5, no. 1, pp. 48–56, 2007.
[41]
S. L. Percival, K. E. Hill, S. Malic, D. W. Thomas, and D. W. Williams, “Antimicrobial tolerance and the significance of persister cells in recalcitrant chronic wound biofilms,” Wound Repair and Regeneration, vol. 19, no. 1, pp. 1–9, 2011.
[42]
A. T. Sheldon, “Antiseptic “resistance”: real or perceived threat?” Clinical Infectious Diseases, vol. 40, no. 11, pp. 1650–1656, 2005.
[43]
A. Brooun, S. H. Liu, and K. Lewis, “A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 3, pp. 640–646, 2000.