E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the success of cloning, expression, and mass production of enzymes by recombinant E. coli. In this paper, these critical factors and approaches to overcome these obstacles are summarized focusing controlled expression of target protein/enzyme in an unmodified form at industrial level. 1. Introduction In the past few years recombinant DNA technology has enabled scientists to produce a large number of diverse proteins, in microorganisms, that were previously unavailable, relatively expensive, or difficult to obtain in quantity [1]. While the expression of foreign genes has been reported in a variety of microorganisms and cell lines, most of this work utilizes E. coli for the cloning and expression of foreign genes [2]. Production of enzymes involves cloning of the appropriate gene into an expression vector under the control of an inducible promoter [3]. 2. Enzyme Production in E. coli The expression of recombinant proteins in cells in which they do not naturally occur is termed heterologous protein production. Bacterial expression systems are commonly used for production of heterologous gene products of both eukaryotic and prokaryotic origin [4]. The expression of heterologous proteins in E. coli, which is the bacterial system, is most widely and routinely used. A number of therapeutically important proteins are now produced as heterologous in E. coli. The first heterologous protein to be employed clinically was human insulin produced in E. coli, first approved in 1982, in UK, West Germany, The Netherland, and USA [5] (Table 1). Table 1: Some enzymes which are produced in bulk quantities and their industrial applications. 3. General Considerations of Selecting E. coli as Heterogeneous Protein Expression Host E. coli is widely used as the host for heterogeneous protein expression for the following advantages: (1) ease of growth and manipulation using simple laboratory equipment; (2) availability of dozens of vectors and host strains that have been developed for maximizing expression; (3) a wealth of knowledge about the genetics and physiology of E. coli; (4) expression can
References
[1]
M. Devasahayam, “Factors affecting the expression of recombinant glycoproteins,” Indian Journal of Medical Research, vol. 126, no. 1, pp. 22–27, 2007.
[2]
M. J. Carrier, M. E. Nugent, W. C. A. Tacon, and S. B. Primrose, “High expression of cloned genes in E. coli and its consequences,” Trends in Biotechnology, vol. 1, no. 3–5, pp. 109–113, 1983.
[3]
W. Schumann and L. C. S. Ferreira, “Production of recombinant proteins in Escherichia coli,” Genetics and Molecular Biology, vol. 27, no. 3, pp. 442–453, 2004.
[4]
B. R. Glick and G. K. Whitney, “Factors affecting the expression of foreign proteins in Escherichia coli,” Journal of Industrial Microbiology, vol. 1, no. 5, pp. 277–282, 1987.
[5]
R. Crowl, C. Seamans, P. Lomedico, and S. McAndrew, “Versatile expression vectors for high-level synthesis of cloned gene products in Escherichia coli,” Gene, vol. 38, no. 1–3, pp. 31–38, 1985.
[6]
T. A. Brown, Gene Cloning- An Introduction, Wiley-Blackwell, 4th edition, 1995.
[7]
G. D. Stormo, T. D. Schneider, and L. M. Gold, “Characterization of translational initiation sites in E. coli,” Nucleic Acids Research, vol. 10, no. 9, pp. 2971–2996, 1982.
[8]
T. M. Gruber and C. A. Gross, “Multiple sigma subunits and the partitioning of bacterial transcription space,” Annual Review of Microbiology, vol. 57, pp. 441–466, 2003.
[9]
V. Ramesh, A. De, and V. Nagaraja, “Engineering hyperexpression of bacteriophage Mu C protein by removal of secondary structure at the translation initiation region,” Protein Engineering, vol. 7, no. 8, pp. 1053–1057, 1994.
[10]
J. Coleman, M. Inouye, and K. Nakamura, “Mutations upstream of the ribosome-binding site affect translational efficiency,” Journal of Molecular Biology, vol. 181, no. 1, pp. 139–143, 1985.
[11]
G. Gross, C. Mielke, I. Hollatz, H. Blockers, and R. Frank, “RNA primary sequence or secondary structure in the translational initiation region controls expression of two variant interferon-β genes in Escherichia coli,” The Journal of Biological Chemistry, vol. 265, no. 29, pp. 17627–17636, 1990.
[12]
J. R. Swartz, “Advances in Escherichia coli production of therapeutic proteins,” Current Opinion in Biotechnology, vol. 12, no. 2, pp. 195–201, 2001.
[13]
S. Ringquist, S. Shinedling, D. Barrick et al., “Translation initiation in Escherichia coli: sequences within the ribosome-binding site,” Molecular Microbiology, vol. 6, no. 9, pp. 1219–1229, 1992.
[14]
J. Pierce and S. Gutteridge, “Large-scale preparation of ribulosebisphosphate carboxylase from a recombinant system in Escherichia coli characterized by extreme plasmid instability,” Applied and Environmental Microbiology, vol. 49, no. 5, pp. 1094–1100, 1985.
[15]
R. E. Ashby and K. A. Stacey, “Stability of a plasmid F trim in populations of a recombination-deficient strain of Escherichia coli in continuous culture,” Antonie van Leeuwenhoek, vol. 50, no. 2, pp. 125–134, 1984.
[16]
R. Meena and P. Harish, “Expression systems for production of heterologous proteins,” Current Science, vol. 80, no. 9, pp. 1121–1128, 2001.
[17]
S. Aiba, H. Tsunekawa, and T. Imanaka, “New approach to tryptophan production by Escherichia coli: genetic manipulation of composite plasmids in vitro,” Applied and Environmental Microbiology, vol. 43, no. 2, pp. 289–297, 1982.
[18]
M. Bittner and D. Vapnek, “Versatile cloning vectors derived from the runaway-replication plasmid pKN402,” Gene, vol. 15, no. 4, pp. 319–329, 1981.
[19]
J. E. Hughes and D. L. Welker, “Copy number control and compatibility of nuclear plasmids in dictyostelium discoideum,” Plasmid, vol. 22, no. 3, pp. 215–223, 1989.
[20]
O. G. Berg and C. G. Kurland, “Growth rate-optimised tRNA abundance and codon usage,” Journal of Molecular Biology, vol. 270, no. 4, pp. 544–550, 1997.
[21]
N. Stoletzki and A. Eyre-Walker, “Synonymous codon usage in Escherichia coli: selection for translational accuracy,” Molecular Biology and Evolution, vol. 24, no. 2, pp. 374–381, 2007.
[22]
G. F. T. Chen and M. Inouye, “Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli,” Genes & Development, vol. 8, no. 21, pp. 2641–2652, 1994.
[23]
H. C. Wong and S. Chang, “Identification of a positive retroregulator that stabilizes mRNAs in bacteria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 10, pp. 3233–3237, 1986.
[24]
S. A. Emory, P. Bouvet, and J. G. Belasco, “A 5′-terminal stem-loop structure can stabilize mRNA in Escherichia coli,” Genes & Development, vol. 6, no. 1, pp. 135–148, 1992.
[25]
F. Baneyx, “Recombinant protein expression in Escherichia coli,” Current Opinion in Biotechnology, vol. 10, no. 5, pp. 411–421, 1999.
[26]
C. S. Hoffman and A. Wright, “Fusions of secreted proteins to alkaline phosphatase: an approach for studying protein secretion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 15, pp. 5107–5111, 1985.
[27]
G. L. Gray, J. S. Baldridge, K. S. McKeown, H. L. Heynecker, and C. N. Chang, “Periplasmic production of correctly processed human growth hormone in Escherichia coli: natural and bacterial signal sequences are interchangeable,” Gene, vol. 39, no. 2-3, pp. 247–254, 1985.
[28]
F. J. Mergulh?o and G. A. Monteiro, “Analysis of factors affecting the periplasmic production of recombinant proteins in Escherichia coli,” Journal of Microbiology and Biotechnology, vol. 17, no. 8, pp. 1236–1241, 2007.
[29]
J. Ghrayeb, H. Kimura, M. Takahara, H. Hsiung, Y. Masui, and M. Inouye, “Secretion cloning vectors in Escherichia coli,” EMBO Journal, vol. 3, no. 10, pp. 2437–2442, 1984.
[30]
L. C. Simrnons and D. G. Yansura, “Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli,” Nature Biotechnology, vol. 14, no. 5, pp. 629–634, 1996.
[31]
S. Gottesman, S. Wickner, and M. R. Maurizi, “Protein quality control: triage by chaperones and proteases,” Genes & Development, vol. 11, no. 7, pp. 815–823, 1997.
[32]
N. Dedhia, R. Richins, A. Mesina, and W. Chen, “Improvement in recombinant protein production in ppGppdeficient Escherichia coli,” Biotechnology and Bioengineering, vol. 53, pp. 379–386, 1997.
[33]
K. Itakura, T. Hirose, R. Crea, and A. D. Riggs, “Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin,” Science, vol. 198, no. 4321, pp. 1056–1063, 1977.
[34]
J. L. Hartley and T. J. Gregori, “Cloning multiple copies of a DNA segment,” Gene, vol. 13, no. 4, pp. 347–353, 1981.
[35]
S. Betts and J. King, “There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike,” Structure, vol. 7, no. 6, pp. R131–R139, 1999.
[36]
J. R. Blackwell and R. Horgan, “A novel strategy for production of a highly expressed recombinant protein in an active form,” FEBS Letters, vol. 295, no. 1–3, pp. 10–12, 1991.
[37]
B. Fahnert, H. Lilie, and P. Neubauer, “Inclusion bodies: formation and utilisation,” Advances in Biochemical Engineering/Biotechnology, vol. 89, pp. 93–142, 2004.
[38]
D. Esposito and D. K. Chatterjee, “Enhancement of soluble protein expression through the use of fusion tags,” Current Opinion in Biotechnology, vol. 17, no. 4, pp. 353–358, 2006.
[39]
H. P. S?rensen and K. K. Mortensen, “Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli,” Microbial Cell Factories, vol. 4, article 1, 2005.
[40]
S. Stahl and P. A. Nygren, “The use of gene fusions to protein A and protein G in immunology and biotechnology,” Pathologie Biologie, vol. 45, no. 1, pp. 66–76, 1997.
[41]
S. C. Makrides, “Strategies for achieving high-level expression of genes in Escherichia coli,” Microbiological Reviews, vol. 60, no. 3, pp. 512–538, 1996.
[42]
T. Moks, L. Abrahmsén, E. Holmgren et al., “Expression of human insulin-like growth factor I in bacteria: use of optimized gene fusion vectors to facilitate protein purification,” Biochemistry, vol. 26, no. 17, pp. 5239–5244, 1987.
[43]
J. G. Thomas and F. Baneyx, “Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing heat-shock proteins,” The Journal of Biological Chemistry, vol. 271, no. 19, pp. 11141–11147, 1996.
[44]
M. J. Gething and J. Sambrook, “Protein folding in the cell,” Nature, vol. 355, no. 6355, pp. 33–45, 1992.
[45]
C. H. Schein and M. H. M. Noteborn, “Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature,” Bio/Technology, vol. 6, no. 3, pp. 291–294, 1988.
[46]
D. C. Andersen and L. Krummen, “Recombinant protein expression for therapeutic applications,” Current Opinion in Biotechnology, vol. 13, no. 2, pp. 117–123, 2002.
[47]
S. Hunke and J. M. Betton, “Temperature effect on inclusion body formation and stress response in the periplasm of Escherichia coli,” Molecular Microbiology, vol. 50, no. 5, pp. 1579–1589, 2003.
[48]
J. H. Choi and S. Y. Lee, “Secretory and extracellular production of recombinant proteins using Escherichia coli,” Applied Microbiology and Biotechnology, vol. 64, no. 5, pp. 625–635, 2004.
[49]
P. Neubauer, H. Y. Lin, and B. Mathiszik, “Metabolic load of recombinant protein production: inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene in Escherichia coli,” Biotechnology and Bioengineering, vol. 83, no. 1, pp. 53–64, 2003.
[50]
N. E. Murray, S. A. Bruce, and K. Murray, “Molecular cloning of the DNA ligase gene from bacteriophage T4. II. Amplification and preparation of the gene product,” Journal of Molecular Biology, vol. 132, no. 3, pp. 493–505, 1979.
[51]
O. Raibaud, M. Mock, and M. Schwartz, “A technique for integrating any DNA fragment into the chromosome of Escherichi coli,” Gene, vol. 29, no. 1-2, pp. 231–241, 1984.