A convenient and accurate reversed-phase high-performance liquid chromatography (RP-HPLC) method for angiotensin I-converting enzyme inhibitory peptides assay was described in this paper. The mobile phase consisted of 70% A (0.05% TFA and 0.05% triethylamine in water, pH = 2.9–3.3) and 30% B (100% acetonitrile) using an Isogradient program. The flow rate was 0.5?mL/min. The absorb wavelength was 226.5?nm; the column temperature was controlled at 25°C. This method for angiotensin I-converting enzyme inhibitory peptides assay was convenient for the Iso-gradient program. The accuracy of the RT-HPLC method was verified by analyzing ACE inhibitory activity of the hydrolysate peptides of silkworm pupae protein, and the results showed that the RT-HPLC method was available for exploring new source of angiotensin I-converting enzyme inhibitory peptides rapidly and veraciously. 1. Introduction Angiotensin-converting enzyme (ACE) is a di-peptidyl carboxypeptidase (EC 3.4.15.1) associated with the blood pressure regulation system of renin-angiotensin. This enzyme can increase blood pressure by converting decapeptide angiotensin I into potent vasoconstricting octapeptide angiotensin II, which leads to a consistent increasing of blood pressure. ACE has been recognized as critical in the renin-angiotensin-aldosterone system (RAAS) for leading to hypertension [1]. Over the last reports, the first ACE peptide inhibitor was discovered from snake venom due to its significant effects on the hypertension. Afterwards, more and more potent synthetic inhibitors of ACE, such as captopril and enalapril, were found continuously. Currently, the application of ACE peptide inhibitors has become an important way to cure hypertension, congestive heart failure (CHF), and chronic renal disease [2], but its side effects to the health are also noticeable [3]. Therefore, the bioactive peptides with ACE inhibitory activity were paid more and more attentiones because of their curative and nontoxic characteristics, especially the food-derived ACE inhibitory peptides, isolated from food or enzymatic digestion of food proteins, such as from gelatin [4], casein [5], fish [6], fig tree latex [7], α-zein [8], cereals and legumes [9], fermented soybean food products [10], soy protein [11], edible mushrooms [12], and microbes [13] that have been successfully used. These anti-ACE peptides derived from food protein hydrolysates might be used as main ingredients of blood pressure-lowering functional foods and nutriments [14]. In order to facilitate the identification and isolation of peptides with
References
[1]
V. Vermeirssen, J. Van Camp, and W. Verstraete, “Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides,” Journal of Biochemical and Biophysical Methods, vol. 51, no. 1, pp. 75–87, 2002.
[2]
R. Behnia, A. Molteni, and R. Igi?, “Angiotensin-converting enzyme inhibitors: mechanisms of action and implications in anesthesia practice,” Current Pharmaceutical Design, vol. 9, no. 9, pp. 763–776, 2003.
[3]
F. H. Messerli, “Combinations in the treatment of hypertension: ACE inhibitors and calcium antagonists,” American Journal of Hypertension, vol. 12, no. 8, pp. S86–S90, 1999.
[4]
M. A. Ondetti and D. W. Cushman, “Enzymes of the renin-angiotensin system and their inhibitors,” Annual Review of Biochemistry, vol. 51, pp. 283–308, 1982.
[5]
A. Morigiwa, K. Kitabatake, Y. Fujimoto, and N. Ikekawa, “Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum,” Chemical and Pharmaceutical Bulletin, vol. 34, no. 7, pp. 3025–3028, 1986.
[6]
K. Sugiyama, K. Takada, M. Egawa, I. Yamamoto, H. Onzuka, and K. Oba, “Hypertensive effect of fish protein hydrolysate,” Nippon Nogeikagaku Kaishi, vol. 65, pp. 35–41, 1991.
[7]
S. Maruyama, S. Miyoshi, and H. Tanaka, “Angiotensin I-converting enzyme inhibitors derived from Ficus carica,” Agricultural and Biological Chemistry, vol. 53, no. 10, pp. 2763–2767, 1989.
[8]
S. Miyoshi, H. Ishikawa, T. Kaneko, F. Fukui, H. Tanaka, and S. Maruyama, “Structures and activity of angiotensin-converting enzyme inhibitors in an alpha-zein hydrolysate,” Agricultural and Biological Chemistry, vol. 55, no. 5, pp. 1313–1318, 1991.
[9]
M. R. Rhyu, Y. J. Nam, and H. Y. Lee, “Screening of angiotensin converting enzyme inhibitors in cereals and legumes,” Food Biotechnology, vol. 5, pp. 334–337, 1996.
[10]
Z. I. Shin, R. Yu, S. A. Park et al., “His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo,” Journal of Agricultural and Food Chemistry, vol. 49, no. 6, pp. 3004–3009, 2001.
[11]
J. Wu and X. Ding, “Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats,” Journal of Agricultural and Food Chemistry, vol. 49, no. 1, pp. 501–506, 2001.
[12]
D. H. Lee, J. H. Kim, J. S. Park, Y. J. Choi, and J. S. Lee, “Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum,” Peptides, vol. 25, no. 4, pp. 621–627, 2004.
[13]
Y. Nakamura, N. Yamamoto, K. Sakai, A. Okubo, S. Yamazaki, and T. Takano, “Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk,” Journal of Dairy Science, vol. 78, no. 4, pp. 777–783, 1995.
[14]
J. Wu, R. E. Aluko, and A. D. Muir, “Improved method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions,” Journal of Chromatography A, vol. 950, no. 1-2, pp. 125–130, 2002.
[15]
D. W. Cushman and H. S. Cheung, “Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung,” Biochemical Pharmacology, vol. 20, no. 7, pp. 1637–1648, 1971.
[16]
J. Friedland and E. Silverstein, “A sensitive fluorimetric assay for serum angiotensin converting enzyme,” American Journal of Clinical Pathology, vol. 66, no. 2, pp. 416–424, 1976.
[17]
E. Silverstein and J. Friedland, “Elevated serum and spleen angiotensin converting enzyme and serum lysozyme in Gaucher's disease,” Clinica Chimica Acta, vol. 74, no. 1, pp. 21–25, 1977.
[18]
A. Persson and I. B. Wilson, “A fluorogenic substrate for angiotensin-converting enzyme,” Analytical Biochemistry, vol. 83, no. 1, pp. 296–303, 1977.
[19]
H. M. Neels, S. L. Scharpe, and M. Van Sande, “Improved micromethod for assay of serum angiotensin converting enzyme,” Clinical Chemistry, vol. 28, no. 6, pp. 1352–1355, 1982.
[20]
M. T. Doig and J. W. Smiley, “Direct injection assay of angiotensin-converting enzyme by high-performance liquid chromatography using a shielded hydrophobic phase column,” Journal of Chromatography B, vol. 613, no. 1, pp. 145–149, 1993.
[21]
M. C. Araujo, R. I. Melo, E. Del Nery et al., “Internally quenched fluorogenic substrates for angiotensin I-converting enzyme,” Journal of Hypertension, vol. 17, no. 5, pp. 665–672, 1999.
[22]
C. J. van Platerink, H. G. M. Janssen, and J. Haverkamp, “Development of an at-line method for the identification of angiotensin-I inhibiting peptides in protein hydrolysates,” Journal of Chromatography B, vol. 846, no. 1-2, pp. 147–154, 2007.