全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enzyme-Enhanced Extraction of Phenolic Compounds and Proteins from Flaxseed Meal

DOI: 10.5402/2013/521067

Full-Text   Cite this paper   Add to My Lib

Abstract:

Flaxseed (Linum usitatissimum) meal, the main byproduct of the flaxseed oil extraction process, is composed mainly of proteins, mucilage, and phenolic compounds. The extraction methods of phenolics either commonly employed the use of mixed solvents (dioxane/ethanol, water/acetone, water/methanol, and water/ethanol) or are done with the aid of alkaline, acid, or enzymatic hydrolysis. This work aimed at the study of optimal conditions for a clean process, using renewable solvents and enzymes, for the extraction of phenolics and proteins from flaxseed meal. After a screening of the most promising commercial preparations based on different carbohydrases and proteases, a central composite rotatable design and a mixture design were applied, achieving as optimal results a solution containing 6.6 and 152?g of phenolics and proteins, respectively. The statistical approach used in the present study for the enzyme-enhanced extraction of phenolics and proteins from the major flaxseed byproduct was effective. By means of the sequential experimental design methodology, the extraction of such compounds was increased 10-fold and 14-fold, when compared to a conventional nonenzymatic extraction. 1. Introduction Flaxseed (Linum usitatissimum) meal is the main byproduct from the flaxseed oil extraction process, being primarily used as a ruminant feed. The meal is composed of three important fractions: proteins (over 300?g?kg?1), which are rich in arginine and glutamine; amino acids that are very important in the prevention and treatment of heart diseases and in supporting the immune system; mucilage (approximate content of 80?g?kg?1), which is a mixture of neutral arabinoxylans and rhamnogalacturonans, with good water-holding capacities and high viscosity; phenolic compounds, such as p-coumaric and ferulic acids, lignan secoisolariciresinol, which is presented glycosylated (Figure 1) and/or esterified with 3-hydroxy-3-methylglutaric acid to form oligomers. The content of secoisolariciresinol diglucoside in flaxseed is 2-3?g?kg?1, and about 10–40?g?kg?1 in defatted flaxseed powder [1–5]. Figure 1: Lignan secoisolariciresinol diglucoside. In humans and animals, secoisolariciresinol is transformed by the anaerobic intestinal microflora into the mammalian lignans, enterolactone, and enterodiol, which are capable of binding at low levels to estrogen receptors. Additionally, these lignans have antioxidant, hypocholesterolemic, and antiatherosclerotic activities and inhibit the development of type 1 and type 2 diabetes, and mammary, prostatic, and colonic tumors [3, 6–9]. Lignans

References

[1]  B. D. Oomah, “Flaxseed as a functional food source,” Journal of the Science of Food and Agriculture, vol. 81, no. 9, pp. 889–894, 2001.
[2]  J. Warrand, P. Michaud, L. Picton et al., “Structural investigations of the neutral polysaccharide of Linum usitatissimum L. seeds mucilage,” International Journal of Biological Macromolecules, vol. 35, no. 3-4, pp. 121–125, 2005.
[3]  Z. S. Zhang, D. Li, L. J. Wang et al., “Optimization of ethanol-water extraction of lignans from flaxseed,” Separation and Purification Technology, vol. 57, no. 1, pp. 17–24, 2007.
[4]  R. Naran, G. Chen, and N. C. Carpita, “Novel rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage,” Plant Physiology, vol. 148, no. 1, pp. 132–141, 2008.
[5]  Y. Xu, C. Hall III, and C. Wolf-Hall, “Antifungal activity stability of flaxseed protein extract using response surface methodology,” Journal of Food Science, vol. 73, no. 1, pp. M9–M14, 2008.
[6]  C. Eliasson, A. Kamal-Eldin, R. Andersson, and P. ?man, “High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction,” Journal of Chromatography A, vol. 1012, no. 2, pp. 151–159, 2003.
[7]  W. Zhang, X. Wang, Y. Liu et al., “Dietary flaxseed lignan extract lowers plasma cholesterol and glucose concentrations in hypercholesterolaemic subjects,” British Journal of Nutrition, vol. 99, no. 6, pp. 1301–1309, 2008.
[8]  K. Mueller, P. Eisner, Y. Yoshie-Stark, R. Nakada, and E. Kirchhoff, “Functional properties and chemical composition of fractionated brown and yellow linseed meal (Linum usitatissimum L.),” Journal of Food Engineering, vol. 98, no. 4, pp. 453–460, 2010.
[9]  S. Renouard, C. Hano, C. Corbin et al., “Cellulase-assisted release of secoisolariciresinol from extracts of flax (Linum usitatissimum) hulls and whole seeds,” Food Chemistry, vol. 122, no. 3, pp. 679–687, 2010.
[10]  N. D. Westcott and D. Paton, “A complex containing lignan, phenolic and aliphatic substances from flax and process for preparing,” WO Patent 00/78771 A1, 2000.
[11]  T. A. Dobbins and D. B. Wiley, “Process for recovering secoisolariciresinol diglycoside from defatted flaxseed,” US Patent 6806356 B2, 2004.
[12]  M. Puri, D. Sharma, and C. J. Barrow, “Enzyme-assisted extraction of bioactives from plants,” Trends in Biotechnology, vol. 30, pp. 37–44, 2011.
[13]  P. G. Waterman and S. Mole, Analysis of Phenolic Plant Metabolites, Blackwell Scientific Publications, Oxford, UK, 1994.
[14]  O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of biological chemistry, vol. 193, no. 1, pp. 265–275, 1951.
[15]  M. Somogyi, “Notes on sugar determination,” The Journal of Biological Chemistry, vol. 195, pp. 19–23, 1952.
[16]  P. F. F. Amaral, Produ??o de Lipase de Yarrowia Lipolytica em Biorreator Multifásico, Editora Edgard Blucher Ltda, S?o Paulo, Brazil, 1st edition, 2010.
[17]  H. Chen and S. Jin, “Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose,” Enzyme and Microbial Technology, vol. 39, no. 7, pp. 1430–1432, 2006.
[18]  R. Beynon and J. S. Bond, Proteolytic Enzymes, a Practical Approach, Oxford University Press, Oxford, UK, 2nd edition, 2001.
[19]  C. C. Udenigwe, Y. S. Lin, W. C. Hou, and R. E. Aluko, “Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions,” Journal of Functional Foods, vol. 1, no. 2, pp. 199–207, 2009.
[20]  C. C. Udenigwe, A. P. Adebiyi, A. Doyen, H. Li, L. Bazinet, and R. Aluko, “Low molecular weight flaxseed protein-derived arginine-containing peptides reduced blood pressure of spontaneously hypertensive rats faster than amino acid form of arginine and native flaxseed protein,” Food Chemistry, vol. 132, pp. 468–475, 2012.
[21]  C. C. Udenigwe, Y. L. Lu, C. H. Han, W. C. Hou, and R. E. Aluko, “Flaxseed protein-derived peptide fractions: antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages,” Food Chemistry, vol. 116, no. 1, pp. 277–284, 2009.
[22]  B. A. Slominski, X. Meng, L. D. Campbell, W. Guenter, and O. Jones, “The use of enzyme technology for improved energy utilization from full-fat oilseeds. Part II: flaxseed,” Poultry Science, vol. 85, no. 6, pp. 1031–1037, 2006.
[23]  P. K. J. P. D. Wanasundara and F. Shahidi, “Removal of flaxseed mucilage by chemical and enzymatic treatments,” Food Chemistry, vol. 59, no. 1, pp. 47–55, 1997.
[24]  C. H. L. Ho, J. E. Cacace, and G. Mazza, “Extraction of lignans, proteins and carbohydrates from flaxseed meal with pressurized low polarity water,” LWT—Food Science and Technology, vol. 40, no. 9, pp. 1637–1647, 2007.
[25]  W. Zhang and S. Xu, “Microwave-assisted extraction of secoisolariciresinol diglucoside from flaxseed hull,” Journal of the Science of Food and Agriculture, vol. 87, no. 8, pp. 1455–1462, 2007.
[26]  V. Calado and D. C. Montgomery, Planejamento de Experimentos Usando o Statistica, E-papers Servi?os Editoriais, Rio de Janeiro, Brazil, 2003.
[27]  M. I. Rodrigues and A. F. Iemma, Planejamento De Experimentos e Otimiza??o De Processos, Casa do P?o Editora, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133