全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biosynthesis of Gold Nanoparticles Using Fusarium oxysporum f. sp. cubense JT1, a Plant Pathogenic Fungus

DOI: 10.5402/2013/515091

Full-Text   Cite this paper   Add to My Lib

Abstract:

The development of reliable processes for the synthesis of gold nanoparticles is an important aspect of current nanotechnology research. Recently, reports are published on the extracellular as well as intracellular biosynthesis of gold nanoparticles using microorganisms. However, these methods of synthesis are rather slow. In present study, rapid and extracellular synthesis of gold nanoparticles using a plant pathogenic fungus F. oxysporum f. sp. cubense JT1 (FocJT1) is reported. Incubation of FocJT1 mycelium with auric chloride solution produces gold nanoparticles in 60?min. Gold nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and particle size analysis. The particles synthesized were of 22?nm sized, capped by proteins, and posed antimicrobial activity against Pseudomonas sp. 1. Introduction Metal nanoparticles exhibit unique electronic, magnetic, catalytic, and optical properties that are different from bulk metals and dependent on their size and shape [1–5]. Gold is often considered the most inert of all metals; however, methods for preparing catalysts having nanoparticles of gold on oxide supports have opened up this new area of opportunity [6]. Gold nanoparticles are of interest mainly due to their stability under atmospheric conditions, resistance to oxidation, and biocompatibility [7, 8]. Therefore, development of techniques for synthesis of gold nanoparticles, of well-defined size and shape, is of great challenge. Different chemical methods developed to control the physical properties of the particles for their different applications. Most of these methods are still in the development stage, and problems are often experienced with stability of the nanoparticle preparations, control of the crystal growth, and aggregation of the particles [9, 10]. There is an increasing pressure to develop clean, nontoxic, and environmentally benign synthetic technologies. Microbial resistance against heavy metal ions has been exploited for biological metal recovery via reduction of the metal ions or formation of metal sulfides [7]. Recently, microorganisms such as bacteria and fungi were shown to be attractive alternative to synthesize gold nanoparticles [11, 12]. However, there is a limited amount of information on the extracellular biosynthesis of gold nanoparticles. Metal nanoparticle synthesis depends on the reducing agent, which reduces Au3+ in to Au0 state [12]. During plant-pathogen interaction, plants are known to produce reactive oxygen species as a defense mechanism against pathogens. For successful infection, pathogen must have high

References

[1]  A. Kumar, S. Mandal, P. R. Selvakannan, R. Pasricha, A. B. Mandale, and M. Sastry, “Investigation into the interaction between surface-bound alkylamines and gold nanoparticles,” Langmuir, vol. 19, no. 15, pp. 6277–6282, 2003.
[2]  M. F. Lengke, M. E. Fleet, and G. Southam, “Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-Thiosulfate and gold(III)-chloride complexes,” Langmuir, vol. 22, no. 6, pp. 2780–2787, 2006.
[3]  T. R. Klaus-Joerger, R. Joerger, E. Olsson, and C. G. Granqvist, “Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science,” Trends in Biotechnology, vol. 19, no. 1, pp. 15–20, 2001.
[4]  B. Ankamwar, M. Chaudhary, and M. Sastry, “Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, vol. 35, no. 1, pp. 19–26, 2005.
[5]  D. Mandal, M. E. Bolander, D. Mukhopadhyay, G. Sarkar, and P. Mukherjee, “The use of microorganisms for the formation of metal nanoparticles and their application,” Applied Microbiology and Biotechnology, vol. 69, no. 5, pp. 485–492, 2006.
[6]  S. A. C. Carabineiro, P. B. Tavares, and J. L. Figueired, “Gold on oxide-doped alumina supports as catalysts for CO oxidation,” Applied Nanoscience, vol. 2, pp. 35–46, 2012.
[7]  M. Gericke and A. Pinches, “Microbial production of gold nanoparticles,” Gold Bulletin, vol. 39, no. 1, pp. 22–28, 2006.
[8]  J. Huang, Q. Li, D. Sun et al., “Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf,” Nanotechnology, vol. 18, no. 10, Article ID 105104, 2007.
[9]  S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, “Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract,” Biotechnology Progress, vol. 22, no. 2, pp. 577–583, 2006.
[10]  S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, “Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth,” Journal of Colloid and Interface Science, vol. 275, no. 2, pp. 496–502, 2004.
[11]  R. Klaus-Joerger, E. Olsson, and C. G. Granqvist, “Silver-based crystalline nanoparticles, microbially fabricated,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 13611–13614, 1999.
[12]  P. Mukherjee, A. Ahmad, D. Mandal et al., “Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle Synthesis,” Nano Letters, vol. 1, no. 10, pp. 515–519, 2001.
[13]  J. N. Thakker, N. Patel, and I. L. Kothari, “Fusarium oxysporumderived elicitor induced enzymological changes in banana leaves against Fusarium wilt disease,” Journal of Mycology and Plant Pathology, vol. 37, pp. 510–513, 2007.
[14]  J. N. Thakker, P. Patel, and P. C. Dhandhukia, “Induction of defense related enzymes in susceptible variety of bananas: role of Fusarium derived elictors,” Archives Of Phytopathology And Plant Protection, vol. 44, pp. 1976–1984, 2011.
[15]  A. Ahmad, P. Mukherjee, S. Senapati et al., “Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum,” Colloids and Surfaces B, vol. 28, no. 4, pp. 313–318, 2003.
[16]  R. A. Baker and J. H. Tatum, “Novel anthraquinones from stationary cultures of Fusarium oxysporum,” Journal of Fermentation and Bioengineering, vol. 85, no. 4, pp. 359–361, 1998.
[17]  N. Durán, P. D. Marcato, O. L. Alves, G. I. H. De Souza, and E. Esposito, “Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains,” Journal of Nanobiotechnology, vol. 3, article 8, 2005.
[18]  A. Sileikaite, I. Prosycevas, J. Pulso, A. Juraitis, and A. Guobiene, “Analysis of silver nanoparticles produced by chemical reduction of silver salt solution,” Journal of Materials Science, vol. 12, pp. 287–291, 2006.
[19]  E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Advanced Materials, vol. 16, no. 19, pp. 1685–1706, 2004.
[20]  A. G. Tkachenko, H. Xie, D. Coleman et al., “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” Journal of the American Chemical Society, vol. 125, no. 16, pp. 4700–4701, 2003.
[21]  A. Henglein, “Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition,” Journal of Physical Chemistry, vol. 97, no. 21, pp. 5457–5471, 1993.
[22]  A. Upadhyay, K. Upadhyay, and N. Nath, Biophysical Chemistry Principles & Techniques Handbook, Himalaya Publishing House, New Delhi, India, 2003.
[23]  A. Gole, C. Dash, S. R. Sainkar, A. B. Mandale, M. Rao, and M. Sastry, “Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum,” Analytical Chemistry, vol. 72, pp. 1401–1403, 2000.
[24]  T. Hamouda, A. Myc, B. Donovan, A. Y. Shih, J. D. Reuter, and J. R. Baker, “A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi,” Microbiological Research, vol. 156, no. 1, pp. 1–7, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133