A biosensor was developed for the determination of BOD value of fermentation industry effluent. The developed biosensor was fabricated by immobilizing the microbial consortium on cellulose acetate (CA) membrane in close proximity to a DO probe electrode. The microbial consortium was harvested from the fermentation industry effluent. The BOD biosensor was calibrated by using a solution containing the equivalent amount of glucose/glutamic acid (GGA) as a standard sample solution. The response time was optimized by immobilizing different concentrations of cell biomass on CA membrane. Once the response time was optimized, it was used for determination of BOD of fermentation industry effluent. For analysis of fermentation industry effluent, the response time was observed 7 minutes with detection limit 1?mg/L. Good linear range with GGA standard solution was observed, 0.99 with relative standard deviation (RSD) <%. The observed BOD value by biosensor showed a good comparison with the conventional method for the determination of BOD. 1. Introduction Biochemical oxygen demand (BOD) is one of the most important and widely used parameters for characterizing the organic pollution of water and wastewater, which is estimated by determining the amount of oxygen required by aerobic microorganisms for degrading organic matters in wastewater. Conventional BOD method is the well-known BOD5 which needs 5-day incubation at 20°C in the dark [1]. The United States includes BOD effluent limitations in its secondary treatment regulations. Secondary sewage treatment is generally expected to remove 85 percent of the BOD measured in sewage and produce effluent BOD concentrations with a 30-day average of less than 30?mg/L and a 7-day average of less than 45?mg/L. The regulations also describe “treatment equivalent to secondary treatment” as removing 65 percent of the BOD and producing effluent BOD concentrations with a 30-day average less than 45?mg/L and a 7-day average less than 65?mg/L [1]. Most pristine rivers will have a five day carbonaceous BOD below 1?mg/L. Moderately polluted rivers may have a BOD value in the range of 2 to 8?mg/L. Municipal sewage that is efficiently treated by a three-stage process would have a value of about 20?mg/L or less. Untreated sewage varies but averages around 600?mg/L in Europe and as low as 200?mg/L in the US, or where there is severe groundwater or surface water infiltration. The generally lower values in the US derive from the much greater water use per capita than in other parts of the world [2]. 1.1. Calculation of BOD Value The BOD of a
References
[1]
“Secondary Treatment Regulation,” Code of Federal Regulations, 40 CFR Part 133. U.S. Environmental Protection Agency (EPA), Washington, DC, USA, 2007.
[2]
N. S. Clair, L. M. Perry, and F. P. Gene, Chemistry for Environmental Engineering and Science, McGraw-Hill, New York, NY, USA, 5th edition, 2003.
[3]
H. S. Peavy, D. R. Rowe, and G. Tchobanoglous, Environmental Engineering, McGraw-Hill, New York, NY, USA, 2nd edition, 1987.
[4]
Y. Nomura, G. J. Chee, and I. Karube, “Biosensor technology for determination of BOD,” Field Analytical Chemistry and Technology, vol. 2, no. 6, pp. 333–340, 1998.
[5]
I. Karube, T. Matsunaga, S. Mitsuda, and S. Suzuki, “Microbial electrode BOD sensors,” Biotechnology and Bioengineering, vol. 19, no. 10, pp. 1535–1547, 1977.
[6]
W. Bourgeois, J. E. Burgess, and R. M. Stuetz, “On-line monitoring of wastewater quality: a review,” Journal of Chemical Technology and Biotechnology, vol. 76, no. 4, pp. 337–348, 2001.
[7]
J. Liu and B. Mattiasson, “Microbial BOD sensors for wastewater analysis,” Water Research, vol. 36, no. 15, pp. 3786–3802, 2002.
[8]
Z. Qian and T. C. Tan, “BOD measurement in the presence of heavy metal ions using a thermally-killed-Bacillus subtilis biosensor,” Water Research, vol. 33, no. 13, pp. 2923–2928, 1999.
[9]
F. Li and T. C. Tan, “Effect of heavy metal ions on the efficacy of a mixed Bacilli BOD sensor,” Biosensors and Bioelectronics, vol. 9, no. 4-5, pp. 315–324, 1994.
[10]
Z. Qian and T. C. Tan, “Response characteristics of a dead-cell BOD sensor,” Water Research, vol. 32, no. 3, pp. 801–807, 1998.
[11]
G. J. Chee, Y. Nomura, K. Ikebukuro, and I. Karube, “Development of highly sensitive BOD sensor and its evaluation using preozonation,” Analytica Chimica Acta, vol. 394, no. 1, pp. 65–71, 1999.
[12]
A. Abdelghani and N. Jaffrezic-Renault, “SPR fibre sensor sensitised by fluorosiloxane polymers,” Sensors and Actuators B, vol. 74, no. 1–3, pp. 117–123, 2001.
[13]
S. Oota, Y. Hatae, K. Amada, H. Koya, and M. Kawakami, “Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater,” Biosensors and Bioelectronics, vol. 26, no. 1, pp. 262–266, 2010.
[14]
C. Liu, C. Ma, D. Yu et al., “Immobilized multi-species based biosensor for rapid biochemical oxygen demand measurement,” Biosensors and Bioelectronics, vol. 26, no. 5, pp. 2074–2079, 2011.
[15]
J. Wang, Y. Zhang, Y. Wang, R. Xu, Z. Sun, and Z. Jie, “An innovative reactor-type biosensor for BOD rapid measurement,” Biosensors and Bioelectronics, vol. 25, no. 7, pp. 1705–1709, 2010.
[16]
L. Changyu, Z. Huijun, Z. Lijie et al., “A biofilm reactor-based approach for rapid on-line determination of biodegradable organic pollutants,” Biosensensor and Bioelectronics, vol. 34, pp. 77–82, 2012.
[17]
L. Peixoto, B. Min, G. Martins et al., “In situ microbial fuel cell-based biosensor for organic carbon,” Bioelectrochemistry, vol. 81, no. 2, pp. 99–103, 2011.
[18]
T. Albert, M. Jordi, X. M. Francesc, and J. del C. Francisco, “Design of a microfluidic respirometer for semi-continuous amperometric short time biochemical oxygen demand (BODst) analysis,” Biochemical Engineering Journal, vol. 66, pp. 27–37, 2012.
[19]
R. Merlin, T. Toomas, J. Eerik, and K. Timo, “Comparative study of semi-specific Aeromonas hydrophila and universal Pseudomonas fluorescens biosensors for BOD measurements in meat industry wastewaters,” Enzyme and Microbial Technology, vol. 50, pp. 221–226, 2012.
[20]
R. Merlin, T. Marti, J. Eerik, and K. Timo, “BOD biosensors for pulp and paper industry wastewater analysis,” Environmental Science and Pollution Research, vol. 19, pp. 3039–3045, 2012.
[21]
A. Viacheslav, K. Stanislav, P. Olga, and R. Anatoly, “Biosensor analyzer for BOD index express control on the basis of the yeast microorganisms Candida maltosa, Candida blankii and Debaryomyces hansenii,” Enzyme and Microbial Technology, vol. 50, pp. 215–220, 2012.
[22]
Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), Washington, DC, USA, 19th edition, 1997.
[23]
A. K?nig, K. Riedel, and J. W. Metzger, “A microbial sensor for detecting inhibitors of nitrification in wastewater,” Biosensors and Bioelectronics, vol. 13, no. 7-8, pp. 869–874, 1998.
[24]
G. C. Gil, I. S. Chang, B. H. Kim et al., “Operational parameters affecting the performance of a mediator-less microbial fuel cell,” Biosensors and Bioelectronics, vol. 18, no. 4, pp. 327–334, 2003.
[25]
D. Chen, Y. Cao, B. Liu, and J. Kong, “A BOD biosensor based on a microorganism immobilized on an Al2O3 sol-gel matrix,” Analytical and Bioanalytical Chemistry, vol. 372, no. 5-6, pp. 737–739, 2002.
[26]
C. Y. Cheng, J. T. Kuo, Y. C. Lin, Y. R. Liao, and Y. C. Chung, “Comparisons of vibrio fischeri, photobacterium phosphoreum, and recombinant luminescent using Escherichia coli as BOD measurement,” Journal of Environmental Science and Health A, vol. 45, no. 2, pp. 233–238, 2010.
[27]
H. Lei and L. Yi, “A novel BOD sensor immobilized active sludge bacteria for rapid determination of biochemical oxygen demand in industrial wastewater,” in Proceedings of the International Conference on Energy and Environment Technology (ICEET '09), vol. 2, pp. 382–384, October 2009.