全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Challenges in Enzymatic Route of Mannitol Production

DOI: 10.5402/2013/914187

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mannitol is an important biochemical often used as medicine and in food sector, yet its biotechnological is not preffered in Industry for large scale production, which may be due to the multistep mechanism involved in hydrogenation and reduction. This paper is a comparative preview covering present chemical and biotechnological approaches existing today for mannitol production at industrial scale. Biotechnological routes are suitable for adaptation at industrial level for mannitol production, and whatever concerns are there had been discussed in detail, namely, raw materials, broad range of enzymes with high activity at elevated temperature suitable for use in reactor, cofactor limitation, reduced by-product formation, end product inhibition, and reduced utilization of mannitol for enhancing the yield with maximum volumetric productivity. 1. Introduction Expanding applications in food and medical sector raises the demand of mannitol constantly, and according to an estimate, the present global market of mannitol is around $100 million with a growth rate of 5%-6% annually (2005–2009). According to Aldrich catalogue 2008, mannitol price was around $79.16 per kg [1], and current price of mannitol according to Sigma catalogues is around 42$ per Kg (2011, M4125, D-mannitol 98% pure). According to the research report entitled “Polyols: A Global Strategic Business Report” announced by Global Industry Analysts Inc., the global market for polyols has been forecasted to reach 4.0 billion pounds by the year 2015. Around 50,000?tons/year of mannitol are produced currently by the chemical hydrogenation alone around the world via hydrogenation of 50% fructose/50% glucose syrup at high pressures and temperatures using a Raney nickel catalyst, but the major product obtained is racemic mixture of mannitol and sorbitol; β-fructose is hydrogenated into mannitol, whereas α-fructose is hydrogenated into sorbitol [2]. Substrate rich in high fructose content or pure fructose is more suitable for mannitol 50% (w/w) production via chemical hydrogenation step and is patented [3]. However, using these raw materials is very expensive, and therefore, an alternative cheap substrate based on enzymatic conversion method was used. In nutshell, chemical route has low yield 17% (w/w), requires costly operations, and produces racemic mixture, and thus, alternative biotechnological methods via microbes may be better solutions for industrial applications [4]. Various alternative substrates have been used by researchers for mannitol production such as pure D-glucose and its epimerization

References

[1]  S. M. Ghoreishi and R. G. Shahrestani, “Innovative strategies for engineering mannitol production,” Trends in Food Science and Technology, vol. 20, no. 6-7, pp. 263–270, 2009.
[2]  W. Soetaert, P. Vanhooren, and E. Vandamme, “Production of mannitol by fermentation methods,” Biotechnology, vol. 10, pp. 261–275, 1999.
[3]  F. Devos, “Process for the production of mannitol,” U.S. Patent 5466-795, 1995.
[4]  B. C. Saha and F. M. Racine, “Effects of pH and corn steep liquor variability on mannitol production by lactobacillus intermedius NRRL B-3693,” Applied Microbiology and Biotechnology, vol. 87, no. 2, pp. 553–560, 2010.
[5]  H. W. Wisselink, R. A. Weusthuis, G. Eggink, J. Hugenholtz, and G. J. Grobben, “Mannitol production by lactic acid bacteria: a review,” International Dairy Journal, vol. 12, no. 2-3, pp. 151–161, 2002.
[6]  B. C. Saha and F. M. Racine, “Biotechnological production of mannitol and its applications,” Applied Microbiology and Biotechnology, vol. 89, no. 4, pp. 879–891, 2011.
[7]  M. E. Embuscado and S. K. Patil, “Erythritol,” in Food Science and Technology, vol. 17, pp. 235–254, Alternative Sweeteners, Marcel Dekker, New York, NY, USA, 2001.
[8]  C. Minasian, C. Wallis, C. Metcalfe, and A. Bush, “Bronchial provocation testing with dry powder mannitol in children with cystic fibrosis,” Pediatric Pulmonology, vol. 43, no. 11, pp. 1078–1084, 2008.
[9]  B. J. Liaw, C. H. Chen, and Y. Z. Chen, “Hydrogenation of fructose over amorphous nano-catalysts of CoNiB and polymer-stabilized CoNiB,” Chemical Engineering Journal, vol. 157, no. 1, pp. 140–145, 2010.
[10]  J. M. H. Stoop and H. Mooibroek, “Cloning and characterization of NADP-mannitol dehydrogenase cDNA from the button mushroom, Agaricus bisporus, and its expression in response to NaCl stress,” Applied and Environmental Microbiology, vol. 64, no. 12, pp. 4689–4696, 1998.
[11]  M. Howaldt, A. Gottlob, K. D. Kulbe, and H. Chmiel, “Simultaneous conversion of glucose/fructose mixtures in a membrane reactor,” Annals of the New York Academy of Sciences, vol. 542, pp. 400–405, 1989.
[12]  C. B?umchen and S. Bringer-Meyer, “Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum,” Applied Microbiology and Biotechnology, vol. 76, no. 3, pp. 545–552, 2007.
[13]  P. Salou, P. Loubiere, and A. Pareilleux, “Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose,” Applied and Environmental Microbiology, vol. 60, no. 5, pp. 1459–1466, 1994.
[14]  J. W. Yun and D. H. Kim, “A comparative study of mannitol production by two lactic acid bacteria,” Journal of Fermentation and Bioengineering, vol. 85, no. 2, pp. 203–208, 1998.
[15]  F. Patra, S. K. Tomar, Y. S. Rajput, and R. Singh, “Characterization of mannitol producing strains of Leuconostoc species,” World Journal of Microbiology and Biotechnology, vol. 27, no. 4, pp. 933–939, 2011.
[16]  M. Korakli and R. F. Vogel, “Purification and characterisation of mannitol dehydrogenase from Lactobacillus sanfranciscensis,” FEMS Microbiology Letters, vol. 220, no. 2, pp. 281–286, 2003.
[17]  H. Ojamo, H. Koivikko, and H. Heikkila, “Process for the production of mannitol by immobilized micro-organisms,” U.S. Patent 6602691 B1, 2003.
[18]  A. R. Neves, A. Ramos, C. Shearman, M. J. Gasson, and H. Santos, “Catabolism of mannitol in Lactococcus lactis MG1363 and a mutant defective in lactate dehydrogenase,” Microbiology, vol. 148, no. 11, pp. 3467–3476, 2002.
[19]  P. Gaspar, A. R. Neves, A. Ramos, M. J. Gasson, C. A. Shearman, and H. Santos, “Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system,” Applied and Environmental Microbiology, vol. 70, no. 3, pp. 1466–1474, 2004.
[20]  A. R. Neves, W. A. Pool, J. Kok, O. P. Kuipers, and H. Santos, “Overview on sugar metabolism and its control in Lactococcus lactis—the input from in vivo NMR,” FEMS Microbiology Reviews, vol. 29, no. 3, pp. 531–554, 2005.
[21]  F. M. Racine and B. C. Saha, “Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations,” Process Biochemistry, vol. 42, no. 12, pp. 1609–1613, 2007.
[22]  W. A. van der Donk and H. Zhao, “Recent developments in pyridine nucleotide regeneration,” Current Opinion in Biotechnology, vol. 14, no. 4, pp. 421–426, 2003.
[23]  N. Von Weymarn, K. Kiviharju, and M. Leisola, “High-level production of D-mannitol with membrane cell-recycle bioreactor,” Journal of Industrial Microbiology and Biotechnology, vol. 29, no. 1, pp. 44–49, 2002.
[24]  I. A. El-Kady, M. H. Moubasher, and M. E. Mostafa, “Accumulation of sugar alcohols by filamentous fungi,” Folia Microbiologica, vol. 40, no. 5, pp. 481–486, 1995.
[25]  L. N. Domelsmith, M. A. Klich, and W. R. Goynes, “Production of mannitol by fungi from cotton dust,” Applied and Environmental Microbiology, vol. 54, no. 7, pp. 1784–1790, 1988.
[26]  H. V. Hendriksen, T. E. Mathiasen, J. Adler-Nissen, J. C. Frisvad, and C. Emborg, “Production of mannitol by penicillium strains,” Journal of Chemical Technology and Biotechnology, vol. 43, no. 3, pp. 223–228, 1988.
[27]  P. Looten, S. Huchette, and M. H. Saniez, “Manufacture of mannitol by fermentation,” Chinese patent CN, 1, 064-311, 1992.
[28]  L. Stankovic, V. Bilik, and M. Matulova, “Production of D-mannitol from D-aldopentoses by the yeast Rhodotorula minuta,” Folia Microbiologica, vol. 34, no. 6, pp. 511–514, 1989.
[29]  J. K. Lee, J. Y. Song, and S. Y. Kim, “Controlling substrate concentration in fed-batch Candida magnoliae culture increases mannitol production,” Biotechnology Progress, vol. 19, no. 3, pp. 768–775, 2003.
[30]  L. Axelsson, “Lactic acid bacteria. Classification and physiology,” in Lactic acid Bacteria. Microbiological and Functional Aspects, A. Salminen Svon Wright and A. Ouwehand, Eds., pp. 1–66, Marcel Dekker, New York, NY, USA, 2004.
[31]  W. P. Hammes, P. Stolz, and M. Ganzle, “Metabolism of lactobacilli in traditional sourdoughs,” Advanced Food Sciences, vol. 18, pp. 176–184, 1996.
[32]  S. M. Bhatt and S. K. Srivastava, “Mannitol relieves substrate inhibition during glucose fermentation by L. delbrucekii due to shift in NADH/NAD+ ratio,” The Internet Journal of Bioengineering, vol. 3, no. 1, 2008.
[33]  Y. M. A. Nakashimada, M. A. Rachman, T. Kakizono, and N. Nishio, “Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states,” International Journal of Hydrogen Energy, vol. 27, no. 11-12, pp. 1399–1405, 2002.
[34]  A. Khan, A. Bhide, and R. Gadre, “Mannitol production from glycerol by resting cells of Candida magnoliae,” Bioresource Technology, vol. 100, no. 20, pp. 4911–4913, 2009.
[35]  M. Helen, Sweeteners and Sugar Alternative in Food Technology, Wiley-Blackwell John & Sons, 2006.
[36]  J. L. Snoep, M. Joost, D. T. Mattos, and O. M. Neijssel, “Effect of the energy source on the NADH/NAD ratio and on pyruvate catabolism in anaerobic chemostat cultures of Enterococcus faecalis NCTC 775,” FEMS Microbiology Letters, vol. 81, no. 1, pp. 63–66, 1991.
[37]  M. J. Yebra and G. Pérez-Martínez, “Cross-talk between the L-sorbose and D-sorbitol (D-glucitol) metabolic pathways in Lactobacillus casei,” Microbiology, vol. 148, no. 8, pp. 2351–2359, 2002.
[38]  A. Ragout, F. Sineriz, H. Diekmann, and G. F. de Valdez, “Shifts in the fermentation balance of Lactobacillus reuteri in the presence of glycerol,” Biotechnology Letters, vol. 18, no. 9, pp. 1105–1108, 1996.
[39]  A. Ramos and H. Santos, “Citrate and sugar cofermentation in Leuconostoc oenos, a 13C nuclear magnetic resonance study,” Applied and Environmental Microbiology, vol. 62, no. 7, pp. 2577–2585, 1996.
[40]  B. J. Koebmann, H. W. Andersen, C. Solem, and P. R. Jensen, “Experimental determination of control of glycolysis in Lactococcus lactis,” Antonie van Leeuwenhoek, vol. 82, no. 1–4, pp. 237–248, 2002.
[41]  K. H. Schneider, F. Giffhorn, and S. Kaplan, “Cloning, nucleotide sequence and characterization of the mannitol dehydrogenase gene from Rhodobacter sphaeroides,” Journal of General Microbiology, vol. 139, no. 10, pp. 2475–2484, 1993.
[42]  B. Nidetzky, D. Haltrich, K. Schmidt, H. Schmidt, A. Weber, and K. D. Kulbe, “Simultaneous enzymatic synthesis of mannitol and gluconic acid: II. Development of a continuous process for a coupled NAD(H)-dependent enzyme system,” Biocatalysis and Biotransformation, vol. 14, no. 1, pp. 47–65, 1996.
[43]  L. Viikari and M. Korhola, “Fructose metabolism in Zymomonas mobilis,” Applied Microbiology and Biotechnology, vol. 24, no. 6, pp. 471–476, 1986.
[44]  O. Adachi, H. Toyama, and K. Matsushita, “Crystalline NADP-dependent D-mannitol dehydrogenase from Gluconobacter suboxydans,” Bioscience, Biotechnology and Biochemistry, vol. 63, no. 2, pp. 402–407, 1999.
[45]  S. Liu, B. Saha, and M. Cotta, “Cloning, expression, purification, and analysis of mannitol dehydrogenase gene mtlK from Lactobacillus brevis,” Applied Biochemistry and Biotechnology A, vol. 121, no. 1–3, pp. 391–401, 2005.
[46]  S. H. Song, N. Ahluwalia, Y. Leduc, L. T. J. Delbaere, and C. Vieille, “Thermotoga maritima TM0298 is a highly thermostable mannitol dehydrogenase,” Applied Microbiology and Biotechnology, vol. 81, no. 3, pp. 485–495, 2008.
[47]  K. Schroer, K. Peter Luef, F. S. Hartner, A. Glieder, and B. Pscheidt, “Engineering the Pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation,” Metabolic Engineering, vol. 12, no. 1, pp. 8–17, 2010.
[48]  Y. Zhanga, Z. Huanga, C. Dua, Y. Lib, and Z. Caoa, “Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol,” Metabolic Engineering, vol. 11, no. 2, pp. 101–106, 2009.
[49]  J. Thompson, “Sugar transport in the lactic acid bacteria,” in Sugar Transport and Metabolism in Gram-Positive Bacteri, J. Reizer and A. Peterkofsky, Eds., pp. 13–38, Ellis Horwood Limited Chichester, 1987.
[50]  U. Nilsson and P. Radstr?m, “Genetic localization and regulation of the maltose phosphorylase gene, maIP, in Lactococcus lactis,” Microbiology, vol. 147, no. 6, pp. 1565–1573, 2001.
[51]  R. Costenoble, L. Adler, C. Niklasson, and G. Lidén, “Engineering of the metabolism of Saccharomyces cerevisiae for anaerobic production of mannitol,” FEMS Yeast Research, vol. 3, no. 1, pp. 17–25, 2003.
[52]  J. Aarnikunnas, K. R?nnholm, and A. Palva, “The mannitol dehydrogenase gene (mdh) from Leuconostoc mesenteroides is distinct from other known bacterial mdh genes,” Applied Microbiology and Biotechnology, vol. 59, no. 6, pp. 665–671, 2002.
[53]  B. Kaup, S. Bringer-Meyer, and H. Sahm, “Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation,” Applied Microbiology and Biotechnology, vol. 64, no. 3, pp. 333–339, 2004.
[54]  M. Haghighatian, M. R. Mofid, M. K. Nekouei, P. Yaghmaei, and A. H. Tafreshi, “Isomalt production by cloning, purifying and expressing of the MDH gene from Pseudomonas fluorescens DSM 50106 in different strains of E. coli,” Pakistan Journal of Biological Sciences, vol. 11, no. 16, pp. 2001–2006, 2008.
[55]  P. Bubner, M. Klimacek, and B. Nidetzky, “Structure-guided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H),” FEBS Letters, vol. 582, no. 2, pp. 233–237, 2008.
[56]  D. F. E. Richter and G. O. Kirst, “D-mannitol dehydrogenase and d-mannitol-1-phosphate dehydrogenase in Platymonas subcordiformis: some characteristics and their role in osmotic adaptation,” Planta, vol. 170, no. 4, pp. 528–534, 1987.
[57]  D. E. Quain and C. A. Boulton, “Growth and metabolism of mannitol by strains of Saccharomyces cerevisiae,” Journal of General Microbiology, vol. 133, no. 7, pp. 1675–1684, 1987.
[58]  M. Slatner, G. Nagl, D. Haltrich, K. D. Kulbe, and B. Nidetzky, “Enzymatic production of pure D-mannitol at high productivity,” Biocatalysis and Biotransformation, vol. 16, no. 5, pp. 351–363, 1998.
[59]  G. Hahn, B. Kaup, S. Bringer-Meyer, and H. Sahm, “A zinc-containing mannitol-2-dehydrogenase from Leuconostoc pseudomesenteroides ATCC 12291: purification of the enzyme and cloning of the gene,” Archives of Microbiology, vol. 179, no. 2, pp. 101–107, 2003.
[60]  F. Heuser, K. Marin, B. Kaup, S. Bringer, and H. Sahm, “Improving d-mannitol productivity of Escherichia coli: impact of NAD, CO2 and expression of a putative sugar permease from Leuconostoc pseudomesenteroides,” Metabolic Engineering, vol. 11, no. 3, pp. 178–183, 2009.
[61]  J. Wei, M. B. Goldberg, V. Burland et al., “Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T,” Infection and Immunity, vol. 71, no. 5, pp. 2775–2786, 2003.
[62]  C. H. Chiu, P. Tang, C. C. Hu et al., “The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen,” Nucleic Acids Research, vol. 33, no. 5, pp. 1690–1698, 2005.
[63]  Y. Song, Z. Tong, J. Wang et al., “Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans,” DNA Research, vol. 11, no. 3, pp. 179–197, 2004.
[64]  S. Otte, A. Scholle, S. Turgut, and J. W. Lengeler, “Mutations which uncouple transport and phosphorylation in the D-mannitol phosphotransferase system of Escherichia coli K-12 and Klebsiella pneumoniae 1033-5P14,” Journal of Bacteriology, vol. 185, no. 7, pp. 2267–2276, 2003.
[65]  K. Makino, K. Oshima, K. Kurokawa et al., “Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae,” The Lancet, vol. 361, no. 9359, pp. 743–749, 2003.
[66]  K. Tan, S. Clancy, M. Borovilos et al., “The mannitol operon repressor MtlR belongs to a new class of transcription regulators in bacteria,” Journal of Biological Chemistry, vol. 284, no. 52, pp. 36670–36679, 2009.
[67]  S. A. Henstra, M. Tuinhof, R. H. Duurkens, and G. T. Robillard, “The Bacillus stearothermophilus mannitol regulator, MtlR, of the phosphotransferase system: a DNA-binding protein, regulated by HPr and IICB(mtl)-dependent phosphorylation,” Journal of Biological Chemistry, vol. 274, no. 8, pp. 4754–4763, 1999.
[68]  F. M. Racine and B. C. Saha, “Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations,” Process Biochemistry, vol. 42, no. 12, pp. 1609–1613, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133