A bacterial isolate, Alcaligenes sp. secreting phytase (EC 3.1.3.8), was isolated and characterized. The optimum conditions for the production of phytase included a fermentation period of 96 h, pH 8.0, and the addition of 1% (w/v) maltose and 1% (w/v) beef extract to the culture medium. This enzyme was purified to homogeneity and had an apparent molecular mass of 41 kDa. The optimum pH range and temperature for the activity of phytase were found to be 7.0-8.0 and 60°C, respectively. This enzyme was strongly inhibited by 0.005 M of Mn2+, Mg2+, and Zn2+. In vitro studies revealed that the phytase from Alcaligenes sp. released inorganic phosphate from plant phytates. Phytase released 1930?±?28, 1740?±?13, 1050?±?31, 845?±?7, 1935?±?32, and 1655?±?21 mg inorganic phosphate/kg plant phytates, namely, chick pea, corn, green pea, groundnut, pearl pea, and chick feed, respectively. 1. Introduction Phytate-degrading enzyme (phytase, EC 3.1.3.8) preparations have a wide range of applications in animal and human nutrition. Besides that, these enzymes have also attracted considerable attention from both scientists and entrepreneurs in the areas of environmental protection and biotechnology. Phytases are of great interest in biotechnological applications, in particular for the reduction of phytate content in feed and food [1]. Phytases are capable of initiating the stepwise release of myoinositol and phosphoric acid, leading to the formation of myoinositol phosphate intermediates from phytate [2]. Most plant-origin foods have from 50% to 80% of their total phosphorus as phytate [3]. Phytate chelates essential minerals, binds to amino acids and proteins, inhibits digestive enzymes, and decreases the nutritive value of food [4]. Monogastric animals poorly utilized phytate-bound phosphorus, due to insufficient phytate-degrading activity in the gut [5]. Therefore, hydrolysis of phytate is desirable for releasing valuable nutrients for beneficial utilization. The addition of phytate-degrading enzymes can improve the nutritional value of plant-based foods by enhancing protein digestibility and mineral availability through phytate hydrolysis during digestion in the stomach or during food processing [6], thus reducing the phosphorus excretion of animals [7]. Only a limited number of bacterial phytases have been reported and studied [8]. Phytase has been isolated from bacteria such as Escherichia coli [9], Pseudomonas sp. [10], anaerobic rumen bacteria, particularly Selemonas ruminantium, Megasphaera elsdenii, Prevotella sp., Mitsuokella multiacidus [11], and Raoultella sp.
References
[1]
A. Vohra and T. Satyanarayana, “Phytases: microbial sources, production, purification, and potential biotechnological applications,” Critical Reviews in Biotechnology, vol. 23, no. 1, pp. 29–60, 2003.
[2]
U. Konietzny and R. Greiner, “Molecular and catalytic properties of phytate-degrading enzymes (phytases),” International Journal of Food Science and Technology, vol. 37, no. 7, pp. 791–812, 2002.
[3]
B. F. Harland and E. R. Morris, “Phytate: a good or a bad food component?” Nutrition Research, vol. 15, no. 5, pp. 733–754, 1995.
[4]
J. Dvo?áková, “Phytase: sources, preparation and exploitation,” Folia Microbiologica, vol. 43, no. 4, pp. 323–338, 1998.
[5]
H. Fandrejewski, S. Raj, D. Weremko et al., “Apparent digestibility in experiment feeds and the effect of commercial phytase,” Asian-Australasian Journal of Animal Sciences, vol. 10, no. 6, pp. 665–670, 1997.
[6]
A. S. Sandberg and T. Andlid, “Phytogenic and microbial phytases in human nutrition,” International Journal of Food Science and Technology, vol. 37, no. 7, pp. 823–833, 2002.
[7]
V. Ravindran, P. H. Selle, G. Ravindran, P. C. H. Morel, A. K. Kies, and W. L. Bryden, “Microbial phytase improves performance, apparent metabolizable energy, and ileal amino acid digestibility of broilers fed a lysine-deficient diet,” Poultry Science, vol. 80, no. 3, pp. 338–344, 2001.
[8]
M. Jorquera, O. Martínez, F. Maruyama, P. Marschner, and M. D. L. L. Mora, “Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria,” Microbes and Environments, vol. 23, no. 3, pp. 182–191, 2008.
[9]
R. Greiner, U. Konietzny, and K. D. Jany, “Purification and characterization of two phytases from Escherichia coli,” Archives of Biochemistry and Biophysics, vol. 303, no. 1, pp. 107–113, 1993.
[10]
A. E. Richardson and P. A. Hadobas, “Soil isolates of Pseudomonas spp. that utilize inositol phosphates,” Canadian Journal of Microbiology, vol. 43, no. 6, pp. 509–516, 1997.
[11]
L. J. Yanke, H. D. Bae, L. B. Selinger, and K. J. Cheng, “Phytase activity of anaerobic ruminal bacteria,” Microbiology, vol. 144, no. 6, pp. 1565–1573, 1998.
[12]
A. Sajidan, A. Farouk, R. Greiner, P. Jungblut, E. C. Müller, and R. Borriss, “Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1,” Applied Microbiology and Biotechnology, vol. 65, no. 1, pp. 110–118, 2004.
[13]
O. P. Walz and J. Pallauf, “Microbial phytase combined with amino acid supplementation reduces P and N excretion of growing and finishing pigs without loss of performance,” International Journal of Food Science and Technology, vol. 37, no. 7, pp. 835–848, 2002.
[14]
X. G. Lei and C. H. Stahl, “Biotechnological development of effective phytases for mineral nutrition and environmental protection,” Applied Microbiology and Biotechnology, vol. 57, no. 4, pp. 474–481, 2001.
[15]
S. J. Howson and R. P. Davis, “Production of phytate-hydrolysing enzyme by some fungi,” Enzyme and Microbial Technology, vol. 5, no. 5, pp. 377–382, 1983.
[16]
H. H. Taussky and E. Skorr, “A microcolorimetric method for the determination of inorganic phosphorus,” The Journal of Biological Chemistry, vol. 202, pp. 675–685, 1953.
[17]
O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.
[18]
D. Fu, H. Huang, H. Luo et al., “A highly pH-stable phytase from Yersinia kristeensenii: cloning, expression, and characterization,” Enzyme and Microbial Technology, vol. 42, no. 6, pp. 499–505, 2008.
[19]
U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970.
[20]
G. Q. Lan, N. Abdullah, S. Jalaludin, and Y. W. Ho, “Optimization of carbon and nitrogen sources for phytase production by Mitsuokella jalaludinii, a new rumen bacterial species,” Letters in Applied Microbiology, vol. 35, no. 2, pp. 157–161, 2002.
[21]
Y. M. Choi, H. J. Suh, and J. M. Kim, “Purification and properties of extracellular phytase from bacillus sp. KHU-10,” Protein Journal, vol. 20, no. 4, pp. 287–292, 2001.
[22]
M. Shimizu, “Purification and characterization of phytase from Bacillus subtilis (natto) N-77,” Bioscience, Biotechnology, and Biochemistry, vol. 56, pp. 1266–1269, 1992.
[23]
S. J. Yoon, Y. J. Choi, H. K. Min et al., “Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme,” Enzyme and Microbial Technology, vol. 18, no. 6, pp. 449–454, 1996.
[24]
A. Hara, S. Ebina, A. Kondo, and T. Funaguma, “A new type of phytase from pollen of Typha latifolia L.,” Agricultural and Biological Chemistry, vol. 49, pp. 3539–3544, 1985.
[25]
J. S. Cho, C. W. Lee, S. H. Kang et al., “Purification and characterization of a phytase from Pseudomonas syringae MOK1,” Current Microbiology, vol. 47, no. 4, pp. 290–294, 2003.
[26]
H. K. Gulati, B. S. Chadha, and H. S. Saini, “Production of feed enzymes (phytase and plant cell wall hydrolyzing enzymes) by Mucor indicus MTCC 6333: purification and characterization of phytase,” Folia Microbiologica, vol. 52, no. 5, pp. 491–497, 2007.
[27]
A. H. Ullah and D. M. Gibson, “Extracellular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization,” Preparative Biochemistry, vol. 17, no. 1, pp. 63–91, 1987.
[28]
R. Greiner and A. E. Farouk, “Purification and characterization of a bacterial phytase whose properties make it exceptionally useful as a feed supplement,” Protein Journal, vol. 26, no. 7, pp. 467–474, 2007.