Plackett-Burman design was used to efficiently select important medium components affecting the lipase production by Aspergillus niger using shea butter cake as the main substrate. Out of the eleven medium components screened, six comprising of sucrose, (NH4)2SO4, Na2HPO4, MgSO4, Tween-80, and olive oil were found to contribute positively to the overall lipase production with a maximum production of 3.35?U/g. Influence of tween-80 on lipase production was investigated, and 1.0% (v/w) of tween-80 resulted in maximum lipase production of 6.10?U/g. Thus, the statistical approach employed in this study allows for rapid identification of important medium parameters affecting the lipase production, and further statistical optimization of medium and process parameters can be explored using response surface methodology. 1. Introduction Lipases (E.C. 3.1.1.3) are enzymes that primarily catalyze the hydrolysis of triacylglycerols and show enormous potentials in catalyzing the synthesis of esters through transesterification, thioesterification, and aminolysis in nonaqueous media [1, 2]. Lipases have been utilized in different industrial processes including detergent formulation, flavor enhancement, treatment of fatty effluents, production of biosurfactants, biopharmaceutical formulations, and biodiesel production [3, 4]. Agroindustrial residues are continuously being generated in vast quantity especially in developing countries and their disposal is associated with several environmental problems [5]. Utilization of these agroresidues and byproducts of agroindustries as nutrient sources for microbial lipase production may reduce the final enzyme production cost, which is one of the major challenges affecting the large-scale production [6, 7]. Some of the agricultural residues reported in the literature for lipase production include brans (wheat, rice, soybean, and barley), oil cakes (soy, olive, gingelly, and babassu), and bagasse (sugarcane) [8, 9]. Lipases can be produced by animals, plants, and microorganisms. However, microbial lipases have been extensively studied due to their interesting characteristics such as stability in organic solvents, action under mild conditions, and high substrate specificity [2, 10]. Fungi are among the best adapted species in the utilization of agricultural residues based on their ability to grow on surfaces of various substrates and penetrate into the interparticle spaces of the solid substrates [11]. Additionally, tolerance to minimal water condition renders fungi to be more efficient in the bioconversion of several renewable
References
[1]
N. N. Gandhi, “Applications of lipase,” Journal of the American Oil Chemists' Society, vol. 74, no. 6, pp. 621–634, 1997.
[2]
R. Sharma, Y. Chisti, and U. C. Banerjee, “Production, purification, characterization, and applications of lipases,” Biotechnology Advances, vol. 19, no. 8, pp. 627–662, 2001.
[3]
J. M. Messias, B. Z. da Costa, V. M. G. de Lima et al., “Screening Botryosphaeria species for lipases: production of lipase by Botryosphaeria ribis EC-01 grown on soybean oil and other carbon sources,” Enzyme and Microbial Technology, vol. 45, no. 6-7, pp. 426–431, 2009.
[4]
N. D. Mahadik, U. S. Puntambekar, K. B. Bastawde, J. M. Khire, and D. V. Gokhale, “Production of acidic lipase by Aspergillus niger in solid state fermentation,” Process Biochemistry, vol. 38, no. 5, pp. 715–721, 2002.
[5]
R. R. Singhania, C. R. Soccol, and A. Pandey, “Application of tropical agro-industrial residues as substrate for solid-state fermentation processes,” in Current Development in Solid-State Fermentation, A. Pandey, R. R. Soccol, and C. Larroche, Eds., vol. 4, pp. 412–442, 2008.
[6]
A. Pandey, C. R. Soccol, and D. Mitchell, “New developments in solid state fermentation: I-bioprocesses and products,” Process Biochemistry, vol. 35, no. 10, pp. 1153–1169, 2000.
[7]
S. Menoncin, N. M. Domingues, D. M. G. Freire et al., “Study of the extraction, concentration, and partial characterization of lipases obtained from Penicillium verrucosum using solid-state fermentation of soybean bran,” Food and Bioprocess Technology, vol. 3, no. 4, pp. 537–544, 2010.
[8]
M. G. Godoy, M. L. E. Gutarra, A. M. Castro, O. L. T. Machado, and D. M. G. Freire, “Adding value to a toxic residue from the biodiesel industry: production of two distinct pool of lipases from Penicillium simplicissimum in castor bean waste,” Journal of Industrial Microbiology and Biotechnology, vol. 38, no. 8, pp. 945–953, 2011.
[9]
A. Salihu, M. Z. Alam, M. I. AbdulKarim, and H. M. Salleh, “Lipase production: an insight in the utilization of renewable agricultural residues,” Resource Conservation and Recycling, vol. 58, pp. 36–44, 2012.
[10]
A. P. Kempka, N. L. Lipke, T. Da Luz Fontoura Pinheiro et al., “Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation,” Bioprocess and Biosystems Engineering, vol. 31, no. 2, pp. 119–125, 2008.
[11]
G. Viniegra-González and E. Favela-Torres, “Why solid-state fermentation seems to be resistant to catabolite repression?” Food Technology and Biotechnology, vol. 44, no. 3, pp. 397–406, 2006.
[12]
J. C. M. Diaz, J. A. Rodríguez, S. Roussos et al., “Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures,” Enzyme and Microbial Technology, vol. 39, no. 5, pp. 1042–1050, 2006.
[13]
A. Tella, “Preliminary studies on nasal decongestant activity from the seed of the shea butter tree, Butyrospermum parkii,” British Journal of Clinical Pharmacology, vol. 7, no. 5, pp. 495–497, 1979.
[14]
K. Schreckenberg, “The contribution of Shea butter (Vitellariaparadoxa C.F. Gaertner) to local livelihood in Benin,” in Forest Products, Livelihoods and Conservation, T. Sunderland and O. Ndoye, Eds., pp. 91–104, Centre for International Forestry Research, Bogor, Indonesia, 2004.
[15]
G. Ruchi, G. Anshu, and S. K. Khare, “Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application,” Bioresource Technology, vol. 99, no. 11, pp. 4796–4802, 2008.
[16]
R. L. Plackett and J. P. Burman, “The design of optimum multifactorial experiments,” Biometrika, vol. 33, no. 4, pp. 305–325, 1946.
[17]
M. Z. Alam, A. Fakhru'l-Razi, and A. H. Molla, “Evaluation of fungal potentiality for bioconversion of domestic wastewater sludge,” Journal of Environmental Sciences, vol. 16, no. 1, pp. 132–137, 2004.
[18]
D. M. Freire, E. M. Teles, E. P. Bon, and G. L. Sant'Anna Jr., “Lipase production by Penicillium restrictum in a bench-scale fermenter: effect of carbon and nitrogen nutrition, agitation, and aeration,” Applied Biochemistry and Biotechnology, vol. 63–65, pp. 409–421, 1997.
[19]
S. Ramachandran, S. K. Singh, C. Larroche, C. R. Soccol, and A. Pandey, “Oil cakes and their biotechnological applications: a review,” Bioresource Technology, vol. 98, no. 10, pp. 2000–2009, 2007.
[20]
A. Rajendran, A. Palanisamy, and V. Thangavelu, “Evaluation of Medium Components by Plackett-Burman Statistical Design for Lipase Production by Candida rugosa and Kinetic Modeling,” Chinese Journal of Biotechnology, vol. 24, no. 3, pp. 436–444, 2008.
[21]
A. Rajendran and V. Thangavelu, “Statistical experimental design for evaluation of medium components for lipase production by Rhizopus arrhizus MTCC 2233,” LWT-Food Science and Technology, vol. 42, no. 5, pp. 985–992, 2009.
[22]
F. J. Contesini, V. C. F. da Silva, R. F. Maciel, R. J. de Lima, F. F. C. Barros, and P. O. de Carvalho, “Response surface analysis for the production of an enantioselective lipase from Aspergillus niger by solid-state fermentation,” The Journal of Microbiology, vol. 47, no. 5, pp. 563–571, 2009.
[23]
L. L. Zhao, X. X. Chen, and J. H. Xu, “Strain improvement of Serratia marcescens ECU1010 and medium cost reduction for economic production of lipase,” World Journal of Microbiology and Biotechnology, vol. 26, no. 3, pp. 537–543, 2010.
[24]
L. A. I. de Azeredo, P. M. Gomes, G. L. Sant'Anna Jr., L. R. Castilho, and D. M. G. Freire, “Production and regulation of lipase activity from Penicillium restrictum in submerged and solid-state fermentations,” Current Microbiology, vol. 54, no. 5, pp. 361–365, 2007.
[25]
I. Maliszewska and P. Mastalerz, “Production and some properties of lipase from Penicillium citrinum,” Enzyme and Microbial Technology, vol. 14, no. 3, pp. 190–193, 1992.
[26]
R. Bussamara, A. M. Fuentefria, E. S. de Oliveira et al., “Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation,” Bioresource Technology, vol. 101, no. 1, pp. 268–275, 2010.