The bioavailability of organic contaminants to the degrading bacteria is a major limitation to efficient bioremediation of sites contaminated with hydrophobic pollutants. Such limitation of bioavailability can be overcome by steady-state biofilm-based reactor. The aim of this study was to examine the effect of such multicellular aggregation by naturally existing oil-degrading bacteria on crude oil degradation. Microorganisms, capable of utilizing crude oil as sole carbon source, were isolated from river, estuary and sea-water samples. Biochemical and 16S rDNA analysis of the best degraders of the three sources was found to belong to the Pseudomonas species. Interestingly, one of the isolates was found to be close to Pseudomonas otitidis family which is not reported yet as a degrader of crude oil. Biodegradation of crude oil was estimated by gas chromatography, and biofilm formation near oil-water interface was quantified by confocal laser scanning microscopy. Biofilm supported batches of the isolated Pseudomonas species were able to degrade crude oil much readily and extensively than the planktonic counterparts. Volumetric and topographic analysis revealed that biofilms formed in presence of crude oil accumulate higher biomass with greater thickness compared to the biofilms produced in presence of glucose as sole carbon source. 1. Introduction World marine ecosystem has been studied extensively since the second half of the last century. Oil spillage and oil pollution in marine environment have been a major threat to the ecosystem including the ocean life as well as to the human being through the transfer of toxic organic materials including polycyclic aromatic hydrocarbons (PAHs) into the food chain [1–3]. Presence of polycyclic aromatic hydrocarbons (PAHs) in soil and water is major problem as environmental contaminants and most of these PAHs are recalcitrant in nature. PAHs mean a potential risk to the marine animals as well as to the human health as many of them are carcinogenic [4]. Physical and chemical methods like volatilization, photooxidation, chemical oxidation, and bioaccumulation [5] are rarely successful in rapid removal and in cleaning up PAHs [6], and also these methods are not safe and cost effective when compared to microbial bioremediation. Bacteria have long been considered as one of the predominant hydrocarbon degrading agents found in the environment, which are free living and ubiquitous. Over twenty genera of bacteria of marine origin have been documented to be hydrocarbon degrading [7–9]. Bacteria belonging to subphyla α-, β-, and
References
[1]
M. Blumer, H. L. Sanders, J. F. Grassle, and G. R. Hampson, “A small oil spill,” Environment, vol. 13, no. 2, pp. 1–12, 1971.
[2]
M. B. Fernandes, M. A. Sicre, A. Boireau, and J. Tronczynski, “Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary,” Marine Pollution Bulletin, vol. 34, no. 11, pp. 857–867, 1997.
[3]
A. Sei and B. Z. Fathepure, “Biodegradation of BTEX at high salinity by an enrichment culture from hypersaline sediments of Rozel Point at Great Salt Lake,” Journal of Applied Microbiology, vol. 107, no. 6, pp. 2001–2008, 2009.
[4]
E. Deziel, G. Paquette, R. Villemur, F. Lepine, and J. G. Bisaillon, “Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons,” Applied and Environmental Microbiology, vol. 62, no. 6, pp. 1908–1912, 1996.
[5]
H. P. Zhao, L. Wang, J. R. Ren, Z. Li, M. Li, and H. W. Gao, “Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5,” Journal of Hazardous Materials, vol. 152, no. 3, pp. 1293–1300, 2008.
[6]
R. C. Prince, “Bioremediation of marine oil spills,” Trends in Biotechnology, vol. 15, no. 5, pp. 158–160, 1997.
[7]
A. Bruns and L. Berthe-Corti, “Fundibacter jadensis gen. nov., sp. nov., a new slightly halophilic bacterium, isolated from intertidal sediment,” International Journal of Systematic Bacteriology, vol. 49, no. 2, pp. 441–448, 1999.
[8]
M. M. Yakimov, P. N. Golyshin, S. Lang et al., “Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium,” International Journal of Systematic Bacteriology, vol. 48, no. 2, pp. 339–348, 1998.
[9]
M. J. Gauthier, B. Lafay, R. Christen et al., “Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium,” International Journal of Systematic Bacteriology, vol. 42, no. 4, pp. 568–576, 1992.
[10]
M. A. Engelhardt, K. Daly, R. P. J. Swannell, and I. M. Head, “Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov.,” Journal of Applied Microbiology, vol. 90, no. 2, pp. 237–247, 2001.
[11]
I. M. Head and R. P. J. Swannell, “Bioremediation of petroleum hydrocarbon contaminants in marine habitats,” Current Opinion in Biotechnology, vol. 10, no. 3, pp. 234–239, 1999.
[12]
G. D. Floodgate, “Some environmental aspects of marine hydrocarbon bacteriology,” Aquatic Microbial Ecology, vol. 9, no. 1, pp. 3–11, 1995.
[13]
A. D. Geiselbrecht, R. P. Herwig, J. W. Deming, and J. T. Staley, “Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget Sound sediments,” Applied and Environmental Microbiology, vol. 62, no. 9, pp. 3344–3349, 1996.
[14]
R. Singh, D. Paul, and R. K. Jain, “Biofilms: implications in bioremediation,” Trends in Microbiology, vol. 14, no. 9, pp. 389–397, 2006.
[15]
D. Paul, G. Pandey, J. Pandey, and R. K. Jain, “Accessing microbial diversity for bioremediation and environmental restoration,” Trends in Biotechnology, vol. 23, no. 3, pp. 135–142, 2005.
[16]
G. Pandey and R. K. Jain, “Bacterial chemotaxis toward environmental pollutants: role in bioremediation,” Applied and Environmental Microbiology, vol. 68, no. 12, pp. 5789–5795, 2002.
[17]
P. L. Stelmack, M. R. Gray, and M. A. Pickard, “Bacterial adhesion to soil contaminants in the presence of surfactants,” Applied and Environmental Microbiology, vol. 65, no. 1, pp. 163–168, 1999.
[18]
R. Morgan, S. Kohn, S. H. Hwang, D. J. Hassett, and K. Sauer, “BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa,” Journal of Bacteriology, vol. 188, no. 21, pp. 7335–7343, 2006.
[19]
J. Schmidt, M. Musken, T. Becker et al., “The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling,” PLoS ONE, vol. 6, no. 3, Article ID e18184.
[20]
J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science, vol. 284, no. 5418, pp. 1318–1322, 1999.
[21]
J. Wimpenny, W. Manz, and U. Szewzyk, “Heterogeneity in biofilms,” FEMS Microbiology Reviews, vol. 24, no. 5, pp. 661–671, 2000.
[22]
A. W. Decho, “Microbial biofilms in intertidal systems: an overview,” Continental Shelf Research, vol. 20, no. 10-11, pp. 1257–1273, 2000.
[23]
B. Klein, P. Bouriat, P. Goulas, and R. Grimaud, “Behavior of Marinobacter hydrocarbonoclasticus SP17 cells during initiation of biofilm formation at the alkane-water interface,” Biotechnology and Bioengineering, vol. 105, no. 3, pp. 461–468, 2010.
[24]
T. Barkay and J. Schaefer, “Metal and radionuclide bioremediation: issues, considerations and potentials,” Current Opinion in Microbiology, vol. 4, no. 3, pp. 318–323, 2001.
[25]
K. Shimada, Y. Itoh, K. Washio, and M. Morikawa, “Efficacy of forming biofilms by naphthalene degrading Pseudomonas stutzeri T102 toward bioremediation technology and its molecular mechanisms,” Chemosphere, vol. 87, no. 3, pp. 226–233, 2012.
[26]
P. Chandran and N. Das, “Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravels,” Biodegradation, vol. 22, no. 6, pp. 1181–1189, 2011.
[27]
C. Gertler, G. Gerdts, K. N. Timmis, M. M. Yakimov, and P. N. Golyshin, “Populations of heavy fuel oil-degrading marine microbial community in presence of oil sorbent materials,” Journal of Applied Microbiology, vol. 107, no. 2, pp. 590–605, 2009.
[28]
H. Mahmoud, R. Al-Hasan, M. Khanafer, and S. Radwan, “A microbiological study of the self-cleaning potential of oily Arabian Gulf coasts,” Environmental Science and Pollution Research, vol. 17, no. 2, pp. 383–391, 2010.
[29]
G. B?dtker, T. Thorstenson, B. L. P. Lilleb? et al., “The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems,” Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 12, pp. 1625–1636, 2008.
[30]
K. S. Cho, O. K. Choi, Y. H. Joo, K. M. Lee, T. H. Lee, and H. W. Ryu, “Characterization of biofilms occurred in seepage groundwater contaminated with petroleum within an urban subway tunnel,” Journal of Environmental Science and Health Part A, vol. 39, no. 3, pp. 639–650, 2004.
[31]
Z. Liu, A. M. Jacobson, and R. G. Luthy, “Biodegradation of naphthalene in aqueous nonionic surfactant systems,” Applied and Environmental Microbiology, vol. 61, no. 1, pp. 145–151, 1995.
[32]
N. A. Sorkhoh, M. A. Ghannoum, A. S. Ibrahim, R. J. Stretton, and S. S. Radwan, “Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait,” Environmental Pollution, vol. 65, no. 1, pp. 1–17, 1990.
[33]
J. G. Holt, N. R. Krieg, P. H. A. Sneat, J. T. Staley, and S. T. Williams, Bergey's Manual of Determinative Bacteriology, Williams & Willkins,, Baltimore, Md, USA, 1994.
[34]
S. T. Williams, M. E. Sharpe, and J. G. Holt, Bergey's Manual of Systematic Bacteriology, Vol. IV, Williams & Wilkins, Baltimore, Md, USA, 1989.
[35]
J. T. Staley, M. P. Bryant, N. Pfenning, and J. G. Holt, Bergey's Manual of Systematic Bacteriology, Vol. III, Williams & Wilkins, Baltimore, Md, USA, 1989.
[36]
M. Hasanuzzaman, A. Ueno, H. Ito et al., “Degradation of long-chain n-alkanes (C36 and C40) by Pseudomonas aeruginosa strain WatG,” International Biodeterioration and Biodegradation, vol. 59, no. 1, pp. 40–43, 2007.
[37]
V. Kisand, R. Cuadros, and J. Wikner, “Phylogeny of culturable estuarine bacteria catabolizing riverine organic matter in the northern Baltic Sea,” Applied and Environmental Microbiology, vol. 68, no. 1, pp. 379–388, 2002.
[38]
S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.
[39]
V. J. M. Allan, M. E. Callow, L. E. Macaskie, and M. Paterson-Beedle, “Effect of nutrient limitation on biofilm formation and phosphatase activity of a Citrobacter sp.,” Microbiology, vol. 148, no. 1, pp. 277–288, 2002.
[40]
A. Rajasekar, T. G. Babu, S. Maruthamuthu, S. T. K. Pandian, S. Mohanan, and N. Palaniswamy, “Biodegradation and corrosion behaviour of Serratia marcescens ACE2 isolated from an Indian diesel-transporting pipeline,” World Journal of Microbiology and Biotechnology, vol. 23, no. 8, pp. 1065–1074, 2007.
[41]
H. P. Zhao, L. Wang, J. R. Ren, Z. Li, M. Li, and H. W. Gao, “Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5,” Journal of Hazardous Materials, vol. 152, no. 3, pp. 1293–1300, 2008.
[42]
M. Raulio, M. J?rn, J. Ahola et al., “Microbe repelling coated stainless steel analysed by field emission scanning electron microscopy and physicochemical methods,” Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 7, pp. 751–760, 2008.
[43]
A. D. Peacock, Y. J. Chang, J. D. Istok et al., “Utilization of microbial biofilms as monitors of bioremediation,” Microbial Ecology, vol. 47, no. 3, pp. 284–292, 2004.
[44]
P. J. Vaysse, L. Prat, S. Mangenot, S. Cruveiller, P. Goulas, and R. Grimaud, “Proteomic analysis of Marinobacter hydrocarbonoclasticus SP17 biofilm formation at the alkane-water interface reveals novel proteins and cellular processes involved in hexadecane assimilation,” Research in Microbiology, vol. 160, no. 10, pp. 829–837, 2009.
[45]
R. Singh, D. Paul, and R. K. Jain, “Biofilms: implications in bioremediation,” Trends in Microbiolog, vol. 14, no. 9, pp. 389–397, 2006.
[46]
H. Al-Awadhi, R. H. Al-Hasan, N. A. Sorkhoh, S. Salamah, and S. S. Radwan, “Establishing oil-degrading biofilms on gravel particles and glass plates,” International Biodeterioration and Biodegradation, vol. 51, no. 3, pp. 181–185, 2003.
[47]
R. Kumar, R. Subarna, H. Dipak, B. Debabrata, and B. Dipa, “Survey of petroleum-degrading bacteria in coastal waters of Sunderban Biosphere Reserve,” World Journal of Microbiology and Biotechnology, vol. 18, no. 6, pp. 575–581, 2002.
[48]
M. Venkateswar Reddy, G. N. Nikhil, S. Venkata Mohan, Y. V. Swamy, and P. N. Sarma, “Pseudomonas otitidis as a potential biocatalyst for polyhydroxyalkanoates (PHA) synthesis using synthetic wastewater and acidogenic effluents,” Bioresource Technology, vol. 123, pp. 471–479, 2012.
[49]
D. Al-Bader, M. K. Kansour, R. Rayan, and S. S. Radwan, “Biofilm comprising phototrophic,diazotrophic, and hydrocarbon-utilizing bacteria: a promising consortium in the bioremediation of aquatic hydrocarbon pollutants,” Environmental Science and Pollution Research International, 2012.