The potential of genetically modified plants to meet the requirements of growing population is not being recognized at present. This is a consequence of concerns raised by the public and the critics about their applications and release into the environment. These include effect on human health and environment, biosafety, world trade monopolies, trustworthiness of public institutions, integrity of regulatory agencies, loss of individual choice, and ethics as well as skepticism about the real potential of the genetically modified plants, and so on. Such concerns are enormous and prevalent even today. However, it should be acknowledged that most of them are not specific for genetically modified plants, and the public should not forget that the conventionally bred plants consumed by them are also associated with similar risks where no information about the gene(s) transfer is available. Moreover, most of the concerns are hypothetical and lack scientific background. Though a few concerns are still to be disproved, it is viewed that, with proper management, these genetically modified plants have immense potential for the betterment of mankind. In the present paper, an overview of the raised concerns and wherever possible reasons assigned to explain their intensity or unsuitability are reviewed. 1. Introduction Genetically modified (GM) plants, also called transgenic plants, are designed to acquire useful quality attributes such as insect resistance, herbicide tolerance, abiotic stress tolerance, disease resistance, high nutritional quality, high yield potential, delayed ripening, enhanced ornamental value, male sterility, and production of edible vaccines. Another major goal for raising the GM plants is their application as bioreactors for the production of nutraceuticals, therapeutic agents, antigens, monoclonal antibody fragments biopolymers, and so forth [1]. Thus, GM plants can potentially affect many aspects of modern society, including agricultural production and medical treatment. Despite these potential applications, the use of GM plants for human welfare has been restricted owing to various concerns raised by the public and the critics. These concerns are divided into different categories, namely, health, nutritional, environmental, ecological, socioeconomic, and ethical concerns [2–25]. These concerns include those arising due to properties of GM plants themselves, those resulting from the spread of the transgenes to other organisms, and also those resulting from their release into the environment. Such concerns have led to the withdrawal of
References
[1]
S. Rastogi and N. Pathak, Genetic Engineering, Oxford University Press, New Delhi, India, 2009.
[2]
S. L. Huttner, C. Arntzen, R. Beachy et al., “Revising oversight of genetically modified plants,” Biotechnology, vol. 10, no. 9, pp. 967–971, 1992.
[3]
R. P. Wrubel, S. Krimsky, and R. E. Wetzler, “Field testing transgenic plants,” BioScience, vol. 42, no. 4, pp. 280–289, 1992.
[4]
H. I. Miller and D. Gunary, “Serious flaws in the horizontal approach to biotechnology risk,” Science, vol. 262, no. 5139, pp. 1500–1501, 1993.
[5]
R. Stone, “Large plots are next test for transgenic crop safety,” Science, vol. 266, no. 5190, pp. 1472–1473, 1994.
[6]
A. Saba, A. Moles, and L. J. Frewer, “Public concerns about general and specific applications of genetic engineering: a comparative study between the UK and Italy,” Nutrition & Food Science, vol. 98, no. 1, pp. 19–29, 1998.
[7]
P. J. Dale, “Public reactions and scientific responses to transgenic crops,” Current Opinion in Biotechnology, vol. 10, no. 2, pp. 203–208, 1999.
[8]
R. Lewis and B. A. Palevitz, “GM crops face heat of debate,” The Scientist, vol. 13, no. 20, p. 9, 1999.
[9]
A. M. Shelton and R. T. Roush, “False reports and the ears of men,” Nature Biotechnology, vol. 17, no. 9, p. 832, 1999.
[10]
J. E. Barton and M. Dracup, “Genetically modified crops and the environment,” Agronomy Journal, vol. 92, no. 4, pp. 797–803, 2000.
[11]
A. Chiter, J. M. Forbes, and G. E. Blair, “DNA stability in plant tissues: implications for the possible transfer of genes from genetically modified food,” FEBS Letters, vol. 481, no. 2, pp. 164–168, 2000.
[12]
N. G. Halford and P. R. Shewry, “Genetically modified crops: methodology, benefits, regulation and public concerns,” British Medical Bulletin, vol. 56, no. 1, pp. 62–73, 2000.
[13]
W. Parrott, “Introduction: the GMO survival guide,” Agronomy Journal, vol. 92, no. 4, p. 792, 2000.
[14]
S. G. Uzogara, “The impact of genetic modification of human foods in the 21st century: a review,” Biotechnology Advances, vol. 18, no. 3, pp. 179–206, 2000.
[15]
L. L. Wolfenbarger and P. R. Phifer, “The ecological risks and benefits of genetically engineered plants,” Science, vol. 290, no. 5499, pp. 2088–2093, 2000.
[16]
C. S. Prakash, “The genetically modified crop debate in the context of agricultural evolution,” Plant Physiology, vol. 126, no. 1, pp. 8–15, 2001.
[17]
A. M. Shelton and M. K. Sears, “The monarch butterfly controversy: scientific interpretations of a phenomenon,” Plant Journal, vol. 27, no. 6, pp. 483–488, 2001.
[18]
A. M. Shelton, J. Z. Zhao, and R. T. Roush, “Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants,” Annual Review of Entomology, vol. 47, pp. 845–881, 2002.
[19]
A. J. Trewavas and C. J. Leaver, “Is opposition to GM crops science or politics? An investigation into the arguments that GM crops pose a particular threat to the environment,” EMBO Reports, vol. 2, no. 6, pp. 455–459, 2001.
[20]
K. Anderson and L. A. Jackson, “Some implications of GM food technology policies for Sub-Saharan Africa,” Journal of African Economies, vol. 14, no. 3, pp. 385–410, 2005.
[21]
K. L. Heong, Y. H. Chen, D. E. Johnson et al., “Debate over a GM rice trill in China,” Science, vol. 310, no. 5746, pp. 231–233, 2005.
[22]
M. Omura, Seeds of Dispute: Crop Crusaders, GRAIN, 2005, http://www.grain.org/.
[23]
O. V. Singh, S. Ghai, D. Paul, and R. K. Jain, “Genetically modified crops: success, safety assessment, and public concern,” Applied Microbiology and Biotechnology, vol. 71, no. 5, pp. 598–607, 2006.
[24]
S. Key, J. K. C. Ma, and P. M. W. Drake, “Genetically modified plants and human health,” Journal of the Royal Society of Medicine, vol. 101, no. 6, pp. 290–298, 2008.
S. W. B. Ewen and A. Pusztai, “Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine,” Lancet, vol. 354, no. 9187, pp. 1353–1354, 1999.
[27]
J. E. Losey, L. S. Rayor, and M. E. Carter, “Transgenic pollen harms monarch larvae,” Nature, vol. 399, no. 6733, p. 214, 1999.
[28]
D. King and A. Gordon, “Contaminant found in taco bell taco shells,” Friends of the Earth, 2001, http://www.foe.org/.
H. I. Miller, P. Morandini, and K. Ammann, “Is biotechnology a victim of anti-science bias in scientific journals?” Trends in Biotechnology, vol. 26, no. 3, pp. 122–125, 2008.
[31]
H. I. Miller, “A golden opportunity, squandered,” Trends in Biotechnology, vol. 27, no. 3, pp. 129–130, 2009.
[32]
H. F. Kaeppler, “Food safety assessment of genetically modified crops,” Agronomy Journal, vol. 92, no. 4, pp. 793–797, 2000.
[33]
J. A. Nordlee, S. L. Taylor, J. A. Townsend, L. A. Thomas, and R. K. Bush, “Identification of a Brazil-nut allergen in transgenic soybeans,” The New England Journal of Medicine, vol. 334, no. 11, pp. 688–692, 1996.
[34]
T. Hoffmann, C. Golz, and O. Schieder, “Foreign DNA sequences are received by a wild-type strain of Aspergillus niger after co-culture with transgenic higher plants,” Current Genetics, vol. 27, no. 1, pp. 70–76, 1994.
[35]
R. B. Flavell, E. Dart, R. L. Fuchs, and R. T. Fraley, “Selectable marker genes: safe for plants?” Biotechnology, vol. 10, no. 2, pp. 141–144, 1992.
[36]
World Health Organization, Report of a WHO Workshop, WHO, Geneva, Switzerland, 1993.
[37]
United States Food and Drug Administration, “Guidance for industry: use of antibiotic resistance marker genes in transgenic plants,” USFDA, 1998, http://www.fda.gov/food/guidancecomplianceregulatoryinformation/.
[38]
R. A. Jefferson, “Assaying chimeric genes in plants: the GUS gene fusion system,” Plant Molecular Biology Reporter, vol. 5, no. 4, pp. 387–405, 1987.
[39]
H. Ebinuma, K. Sugita, E. Matsunaga, and M. Yamakado, “Selection of marker-free transgenic plants using the isopentenyl transferase gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 6, pp. 2117–2121, 1997.
[40]
H. F. Kaeppler, G. K. Menon, R. W. Skadsen, A. M. Nuutila, and A. R. Carlson, “Transgenic oat plants via visual selection of cells expressing green fluorescent protein,” Plant Cell Reports, vol. 19, no. 7, pp. 661–666, 2000.
[41]
G. Libiakova, B. J?rgensen, G. Palmgren, P. Ulvskov, and E. Johansen, “Efficacy of an intron-containing kanamycin resistance gene as a selectable marker in plant transformation,” Plant Cell Reports, vol. 20, no. 7, pp. 610–615, 2001.
[42]
P. K. Jaiwal, L. Sahoo, N. D. Singh, and R. P. Singh, “Strategies to deal with the concern about marker genes in transgenic plants: some environment-friendly approaches,” Current Science, vol. 83, no. 2, pp. 128–136, 2002.
[43]
M. De Block and D. Debrouwer, “Two T-DNA's co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus,” Theoretical and Applied Genetics, vol. 82, no. 3, pp. 257–263, 1991.
[44]
M. Daley, V. C. Knauf, K. R. Summerfelt, and J. C. Turner, “Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants,” Plant Cell Reports, vol. 17, no. 6-7, pp. 489–496, 1998.
[45]
E. C. Dale and D. W. Ow, “Gene transfer with subsequent removal of the selection gene from the host genome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 23, pp. 10558–10562, 1991.
[46]
S. H. Russell, J. L. Hoopes, and J. T. Odell, “Directed excision of a transgene from the plant genome,” Molecular and General Genetics, vol. 234, no. 1, pp. 49–59, 1992.
[47]
N. J. Kilby, G. J. Davies, M. R. Snaith, and J. A. Murray, “FLP recombinase in transgenic plants: constitituve activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis,” Plant Journal, vol. 8, no. 5, pp. 637–652, 1995.
[48]
H. Onouchi, R. Nishihama, M. Kudo, Y. Machida, and C. Machida, “Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana,” Molecular and General Genetics, vol. 247, no. 6, pp. 653–660, 1995.
[49]
L. A. Lyznik, K. V. Rao, and T. K. Hodges, “FLP-mediated recombination of FRT sites in the maize genome,” Nucleic Acids Research, vol. 24, no. 19, pp. 3784–3789, 1996.
[50]
A. C. Vergunst, L. E. T. Jansen, and P. J. J. Hooykaas, “Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase,” Nucleic Acids Research, vol. 26, no. 11, pp. 2729–2734, 1998.
[51]
J. I. Yoder and A. P. Goldsbrough, “Transformation systems for generating marker-free transgenic plants,” Biotechnology, vol. 12, no. 3, pp. 263–267, 1994.
[52]
A. P. Goldsbrough, C. N. Lastrella, and J. I. Yoder, “Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato,” Biotechnology, vol. 11, no. 11, pp. 1286–1292, 1993.
[53]
E. Zubko, C. Scutt, and P. Meyer, “Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes,” Nature Biotechnology, vol. 18, no. 4, pp. 442–445, 2000.
[54]
B. W. Falk and G. Bruening, “Will transgenic crops generate new viruses and new diseases?” Science, vol. 263, no. 5152, pp. 1395–1396, 1994.
[55]
D. Gonsalves, “Control of papaya ringspot virus in papaya: a case study,” Annual Review of Phytopathology, vol. 36, pp. 415–437, 1998.
[56]
F. Widmer, R. J. Seidler, and L. S. Watrud, “Sensitive detection of transgenic plant marker gene persistence in soil microcosms,” Molecular Ecology, vol. 5, no. 5, pp. 603–613, 1996.
[57]
F. Widmer, R. J. Seidler, K. K. Donegan, and G. L. Reed, “Quantification of transgenic plant marker gene persistence in the field,” Molecular Ecology, vol. 6, no. 1, pp. 1–7, 1997.
[58]
E. Paget, M. Lebrun, G. Freyssinet, and P. Simonet, “The fate of recombinant plant DNA in soil,” European Journal of Soil Biology, vol. 34, no. 2, pp. 81–88, 1998.
[59]
P. S. Duggan, P. A. Chambers, J. Heritage, and J. M. Forbes, “Survival of free DNA encoding antibiotic resistance from transgenic maize and the transformation activity of DNA in ovine saliva, ovine rumen fluid and silage effluent,” FEMS Microbiology Letters, vol. 191, no. 1, pp. 71–77, 2000.
[60]
G. Head, J. B. Surber, J. A. Watson, J. W. Martin, and J. J. Duan, “No detection of Cry1Ac protein in soil after multiple years of transgenic Bt cotton (Bollgard) use,” Environmental Entomology, vol. 31, no. 1, pp. 30–36, 2002.
[61]
C. Then, “The campaign for genetically modified rice is at the crossroads: a critical look at golden rice after nearly 10 years of development,,” Foodwatch in Germany, 2009, http://www.foodwatch.de/.
[62]
V. Shiva, Stolen Harvest: The Hijacking of the Global Food Supply, South End Press, 2000.
[63]
V. Shiva, “Vitamin A rice: a blind approach to blindness control,” Genet News, 2000, http://www.gene.ch/genet/.
[64]
V. Shiva, “Genetically engineered vitamin A rice,” in Redesigning Life? The Worldwide Challenge to Genetic Engineering, B. Tokar, Ed., Zed Books Ltd, London, UK, 2001.
[65]
Greenpeace, “All that glitters is not gold: the false hope of golden rice,” Greenpeace, 2005, http://www.greenpeace.org/.
[66]
Rural Advancement Foundation International, RAFI, 2000, http://www.rafi.org/.
[67]
J. A. Paine, C. A. Shipton, S. Chaggar et al., “Improving the nutritional value of Golden Rice through increased pro-vitamin A content,” Nature Biotechnology, vol. 23, no. 4, pp. 482–487, 2005.
[68]
H. J. Rogers and H. C. Parkes, “Transgenic plants and the environment,” Journal of Experimental Botany, vol. 46, no. 286, pp. 467–488, 1995.
[69]
T. R. Mikkelsen, B. Andersen, and R. B. Jorgensen, “The risk of crop transgene spread,” Nature, vol. 380, no. 6569, p. 31, 1996.
[70]
M. G. Paoletti and D. Pimentel, “Genetic engineering in agriculture and the environment,” BioScience, vol. 46, no. 9, pp. 665–673, 1996.
[71]
A. A. Snow and P. M. Palma, “Commercialization of transgenic plants: potential ecological risks,” BioScience, vol. 47, pp. 86–96, 1996.
[72]
R. R. James, S. P. Difazio, A. M. Brunner, and S. H. Strauss, “Environmental effects of genetically engineered woody biomass crops,” Biomass and Bioenergy, vol. 14, no. 4, pp. 403–414, 1998.
[73]
M. A. Altieri, “The ecological impacts of transgenic crops on agroecosystem health,” Ecosystem Health, vol. 6, no. 1, pp. 13–23, 2000.
[74]
A. Latifah, “Potential risks of genetically modified organisms release into the environment,” in Proceedings of the Regional Symposium on Environment and Natural Resources, vol. 1, pp. 205–214, 2002.
[75]
A. J. Conner, T. R. Glare, and J. P. Nap, “The release of genetically modified crops into the environment—part II: overview of ecological risk assessment,” Plant Journal, vol. 33, no. 1, pp. 19–46, 2003.
[76]
M. Mellon, “Environmental effects of genetically modified food crops—recent experiences,,” Union of Concerned Scientists, Cambridge, Mass, USA, 2012, http://www.ucsusa.org/.
[77]
P. J. Dale, B. Clarke, and E. M. G. Fontes, “Potential for the environmental impact of transgenic crops,” Nature Biotechnology, vol. 20, no. 6, pp. 567–574, 2002.
[78]
P. F. Umbeck, K. A. Barton, E. V. Nordheim, J. C. McCarty, W. L. Parrott, and J. N. Jenkins, “Degree of pollen dispersal by insects from a field test of genetically engineered cotton,” Journal of Economic Entomology, vol. 84, pp. 1943–1950, 1991.
[79]
A. J. A. M. Kapteijns, “Risk assessment of genetically modified crops. Potential of four arable crops to hybridize with the wild flora,” Euphytica, vol. 66, no. 1-2, pp. 145–149, 1993.
[80]
A. F. Raybould and A. J. Gray, “Genetically modified crops and hybridization with wild relatives: a UK perspective,” Journal of Applied Ecology, vol. 30, no. 2, pp. 199–219, 1993.
[81]
T. Klinger and N. C. Ellstrand, “Engineered genes in wild populations: fitness of weed-crop hybrids of Raphanus sativus,” Ecological Applications, vol. 4, no. 1, pp. 117–120, 1994.
[82]
G. Giddings, “Modelling the spread of pollen from Lolium perenne. The implications for the release of wind-pollinated transgenics,” Theoretical and Applied Genetics, vol. 100, no. 6, pp. 971–974, 2000.
[83]
L. J. Spencer and A. A. Snow, “Fecundity of transgenic wild-crop hybrids of Cucurbita pepo (Cucurbitaceae): implications for crop-to-wild gene flow,” Heredity, vol. 86, no. 6, pp. 694–702, 2001.
[84]
M. Fuchs, E. M. Chirco, and D. Gonsalves, “Movement of coat protein genes from a commercial virus-resistant transgenic squash into a wild relative,” Environmental Biosafety Research, vol. 3, no. 1, pp. 5–16, 2004.
[85]
S. E. Scott and M. J. Wilkinson, “Transgene risk is low,” Nature, vol. 393, no. 6683, p. 320, 1998.
[86]
P. Maliga, “Plastid transformation in higher plants,” Annual Review of Plant Biology, vol. 55, pp. 289–313, 2004.
[87]
H. Daniell, S. Kumar, and N. Dufourmantel, “Breakthrough in chloroplast genetic engineering of agronomically important crops,” Trends in Biotechnology, vol. 23, no. 5, pp. 238–245, 2005.
[88]
L. Landbo and R. B. J?rgensen, “Seed germination in weedy Brassica campestris and its hybrids with B. napus: implications for risk assessment of transgenic oilseed rape,” Euphytica, vol. 97, no. 2, pp. 209–216, 1997.
[89]
H. Daniell, R. Datta, S. Varma, S. Gray, and S. B. Lee, “Containment of herbicide resistance through genetic engineering of the chloroplast genome,” Nature Biotechnology, vol. 16, no. 4, pp. 345–348, 1998.
[90]
R. B. Jorgensen, B. Andersen, T. P. Hauser, L. Landbo, T. Mikkelsen, and H. Ostergard, “Introgression of crop genes from oilseed rape (Brassica napus) to related wild species—an avenue for the escape of engineered genes,” Acta Horticulturae, vol. 459, pp. 211–217, 1998.
[91]
L. B. Hansen, H. R. Siegismund, and R. B. J?rgensen, “Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population,” Genetic Resources and Crop Evolution, vol. 48, no. 6, pp. 621–627, 2001.
[92]
R. Manasse and P. Kareiva, “Quantifying the spread of recombinant genes and organisms,” in Assessing Ecological Risks of Biotechnology, L. R. Ginzburg, Ed., pp. 215–231, Butterworth-Heinemann, Boston, Mass, USA, 1991.
[93]
K. H. Keeler, “Can genetically engineered crops become weeds?” Biotechnology, vol. 7, pp. 1134–1139, 1992.
[94]
M. J. Crawley, R. S. Hails, M. Rees, D. Kohn, and J. Buxton, “Ecology of transgenic oilseed rape in natural habitats,” Nature, vol. 363, no. 6430, pp. 620–623, 1993.
[95]
M. J. Crawley, S. L. Brown, R. S. Hails, D. D. Kohn, and M. Rees, “Transgenic crops in natural habitats,” Nature, vol. 409, no. 6821, pp. 682–683, 2001.
[96]
M. Williamson, “Invaders, weeds and the risk from genetically manipulated organisms,” Experientia, vol. 49, no. 3, pp. 219–224, 1993.
[97]
J. F. Hancock, R. Grumet, and S. C. Hokanson, “The opportunity for escape of engineered genes from transgenic crops,” HortScience, vol. 31, no. 7, pp. 1080–1085, 1996.
[98]
J. B. Sweet and R. Shepperson, “The impact of genetically modified herbicide tolerant oilseed rape in UK,” Acta Horticulturae, vol. 459, pp. 225–234, 1997.
[99]
M. A. Rieger, C. Preston, and S. B. Powles, “Risks of gene flow from transgenic herbicide-resistant canola (Brassica napus) to weedy relatives in southern Australian cropping systems,” Australian Journal of Agricultural Research, vol. 50, no. 2, pp. 115–128, 1999.
[100]
A. A. Snow, B. Andersen, and R. B. Jorgensen, “Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa,” Molecular Ecology, vol. 8, no. 4, pp. 605–615, 1999.
[101]
K. Ammann, Y. Jacot, and R. Al Mazyad, “Weediness in the light of new transgenic crops and their potential hybrids,” Journal of Plant Diseases, vol. 17, pp. 19–29, 2000.
[102]
C. L. Moyes, J. M. Lilley, C. A. Casais, S. G. Cole, P. D. Haeger, and P. J. Dale, “Barriers to gene flow from oilseed rape (Brassica napus) into populations of Sinapis arvensis,” Molecular Ecology, vol. 11, no. 1, pp. 103–112, 2002.
[103]
I. J. Senior and P. J. Dale, “Herbicide-tolerant crops in agriculture: oilseed rape as a case study,” Plant Breeding, vol. 121, no. 2, pp. 97–107, 2002.
[104]
J. A. Scheffler and P. J. Dale, “Opportunities for gene transfer from transgenic oilseed rape (Brassica napus) to related species,” Transgenic Research, vol. 3, no. 5, pp. 263–278, 1994.
[105]
J. A. Sheffler, A. Parkinson, and P. J. Dale, “Evaluating the effectiveness of isolation distances for field plots of oilseed rape (Brassica napus) using a herbicide-resistance transgene as a selectable marker,” Plant Breeding, vol. 14, pp. 317–321, 1995.
[106]
National Research Council, Genetically Modified Pest Protected Plants: Science and Regulation, National Academy Press, Washington, DC, USA, 2000.
[107]
M. A. Lappe, E. B. Bailey, C. Childress, and K. D. R. Setcheil, “Alterations in clinically important phytoesterogens in genetically modified herbicide-tolerant soybeans,” Journal of Medicinal Food, vol. 1, no. 4, pp. 241–245, 1998.
[108]
American Soybean Association, “ASA confirms the natural variability in isoflavones in soybean,” American Soybean Association, 1999, http://www.soygrowers.com/.
[109]
J. H. Westwood and P. L. Traynor, Ecological Effects of Pest Resistance Genes in Managed Ecosystems, Information Systems for Biotechnology, Blacksburg, Va, USA, 1999.
[110]
J. Orson, Gene Stacking in Herbicide Tolerant Oilseed Rape: Lessons from the North American Experience, vol. 1 of English Nature Research Reports, no. 443, English Nature, 2002.
[111]
K. F. Raffa, “Genetic engineering of trees to enhance resistance to insects,” BioScience, vol. 39, no. 8, pp. 524–534, 1989.
[112]
B. E. Tabashnik, “Evolution of resistance to Bacillus thuringiensis,” Annual Review of Entomology, vol. 39, pp. 47–79, 1994.
[113]
L. S. Bauer, “Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis,” Florida Entomologist, vol. 87, pp. 414–443, 1995.
[114]
S. B. Powles, C. Preston, I. B. Bryan, and A. R. Jutsum, “Herbicide resistance: impact and management,” Advances in Agronomy, vol. 58, pp. 57–93, 1996.
[115]
A. Dove, “Survey raises concerns about Bt resistance management,” Nature Biotechnology, vol. 19, no. 4, pp. 293–294, 2001.
[116]
D. N. Alstad and D. A. Andow, “Managing the evolution of insect resistance to transgenic plants,” Science, vol. 268, no. 5219, pp. 1894–1896, 1995.
[117]
D. S. Pimentel and P. H. Raven, “Bt corn pollen impacts on nontarget Lepidoptera: assessment of effects in nature,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 15, pp. 8198–8199, 2000.
[118]
R. L. Hellmich, B. D. Siegfried, M. K. Sears et al., “Monarch larvae sensitivity to Bacillus thuringiensis-purified proteins and pollen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 21, pp. 11925–11930, 2001.
[119]
K. S. Oberhauser, M. D. Prysby, H. R. Mattila et al., “Temporal and spatial overlap between monarch larvae and corn pollen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 21, pp. 11913–11918, 2001.
[120]
D. E. Stanley-Horn, G. P. Dively, R. L. Hellmich et al., “Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 21, pp. 11931–11936, 2001.
[121]
M. K. Sears, R. L. Hellmich, D. E. Stanley-Horn et al., “Impact of Bt corn pollen on monarch butterfly populations: a risk assessment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 21, pp. 11937–11942, 2001.
[122]
A. R. Zangerl, D. McKenna, C. L. Wraight et al., “Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 21, pp. 11908–11912, 2001.
[123]
P. C. Jepson, B. A. Croft, and G. E. Pratt, “Test systems to determine the ecological risks posed by toxin release from Bacillus thuringiensis genes in crop plants,” Molecular Ecology, vol. 3, pp. 81–99, 1994.
[124]
D. Saxena and G. Stotzky, “Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ,” FEMS Microbiology Ecology, vol. 33, no. 1, pp. 35–39, 2000.
[125]
R. J. Goldberg, “Environmental concerns with the development of herbicide-tolerant plants,” Weed Technology, vol. 6, no. 3, pp. 647–652, 1992.
[126]
S. R. Radosevich, C. M. Ghersa, and G. Comstock, “Concerns a weed scientist might have about herbicide-resistant crops,” Weed Technology, vol. 6, no. 3, p. 635, 1992.
[127]
United States Department of Agriculture, “Genetically engineered crops: has adoption reduced pesticide use?” USDA, 2000, http://www.ers.usda.gov.
[128]
Canola Council of Canada, “An agronomic and economic assessment of transgenic canola,” Canola Council of Canada, 2001, http://www.canolacouncil.org/.
[129]
V. Shiva, Monocultures of the Mind, Zed Books Ltd, London, UK, 1993.
[130]
H. Tapp and G. Stotzky, “Insecticidal activity of the toxins from Bacillus thuringiensis subspecies kurstaki and tenebrionis adsorbed and bound on pure and soil clays,” Applied and Environmental Microbiology, vol. 61, no. 5, pp. 1786–1790, 1995.
[131]
G. Stotzky, “Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids,” Journal of Environmental Quality, vol. 29, no. 3, pp. 691–705, 2000.
[132]
M. C. Jordan, “The privatization of food: corporate control of biotechnology,” Agronomy Journal, vol. 92, no. 4, pp. 803–806, 2000.
[133]
P. K. Gupta, “The terminator technology for seed production and protection: why and how?” Current Science, vol. 75, no. 12, pp. 1319–1323, 1998.
[134]
S. Rakshit, “Terminator technology: science and politics,” Current Science, vol. 75, pp. 747–749, 1998.
[135]
D. B. Whitman, “Genetically modified foods: harmful or helpful?” CSA, 2000, http://www.csa.com/.
[136]
B. R. Glick and J. J. Pasternak, Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press, Washington, DC, USA, 2003.
[137]
Asia-Pacific Consortium on Agricultural Biotechnology (APCoAB), Bt Cotton in India—A Status Report, New Delhi, India, 2006.
[138]
Asia-Pacific Association of Agricultural Research Institutions (APAARI), “Expert Consultation on Agricultural Biotechnology, Biosafety and Biosecurity: Proceedings and Recommendations,” APAARI, 2012, http://www.apaari.org/.
[139]
M/s Maharashtra Hybrid Seeds Company Ltd. (Mahyco), Mumbai University of Agricultural Sciences (UAS), Dharwad, and Tamil Nadu Agricultural University (TNAU), Report of the Expert Committee (EC-II) on Bt Brinjal Event EE-1, Genetic Engineering Approval Committee, Ministry of Environment and Forests, Government of India, New Delhi, India, 2009.
[140]
J. Samuels, “Genetically engineered Bt brinjal and the implications for plant biodiversity—revisited,” Greenpeace, 2012, http://www.greenpeace.org/india/.