全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Zinc Uptake by Lactic Acid Bacteria

DOI: 10.5402/2013/312917

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study aims to investigate zinc biosorption by strains of lactobacilli and bifidobacteria with a view to exploit them as organic matrixes for zinc dietary supplementation. Sixteen human strains of Lactobacillus and Bifidobacterium were assayed for zinc uptake. The minimum inhibitory concentration of zinc salts differed among the strains, but was never below 15?mmol?L?1. When cultured in MRS broth containing 10?mmol?L?1 ZnSO4, all the strains were capable of accumulating zinc in the range between 11 and 135?μmol?g?1. The highest amount of cell-bound zinc was obtained in L. acidophilus WC 0203. pH-controlled batch cultures of this strain revealed that zinc uptake started in the growth phase, but occurred mostly during the stationary phase. Pasteurized and viable cultures accumulated similar amount of zinc, suggesting that a nonmetabolically mediated mechanism is involved in zinc uptake. These results provide new perspectives on the specific use of probiotics, since L. acidophilus WC 0203 could function as an organic matrix for zinc incorporation. The bioavailability of Lactobacillus-bound zinc deserves to be investigated to provide a future basis for optimization of zinc supplementation or fortification. 1. Introduction Zinc is one of the metal ions essential to life. After iron, it is the second most abundant transition metal ion in living organisms, including humans [1]. Zinc is present in all the tissues, fluids, and organs within the human body, for a total body content of approximately 1.4–2.3?g. It is necessary for catalytic, structural, and regulatory functions in hundreds of enzymes and in thousands of protein domains. Enumerating and discussing the role of zinc in these functions is far beyond the aim of this study [2–5]. The recommended dietary intake for zinc varies with age and physiological status, ranging between 5 and 18?mg day?1. Severe zinc deficiency causes a number of adverse physiological consequences on the epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems [4, 6, 7]. It has been demonstrated that the form of the trace elements affects the intake efficiency in animals. Several studies reported that certain organic compounds of trace elements (including iron, zinc, magnesium, and selenium) are more bioavailable than the inorganic forms, possibly because the mechanisms for absorption have adapted to these kinds of nutrients during species evolution [8–12]. Moreover, in order to develop biotechnological sources of trace elements for diet supplementation, microorganisms (e.g., yeast, lactobacilli,

References

[1]  C. Andreini, L. Banci, I. Bertini, and A. Rosato, “Zinc through the three domains of life,” Journal of Proteome Research, vol. 5, no. 11, pp. 3173–3178, 2006.
[2]  A. S. Prasad, “Zinc: an overview,” Nutrition, vol. 11, no. 1, pp. 93–99, 1995.
[3]  A. Goel, V. Dani, and D. K. Dhawan, “Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity,” Chemico-Biological Interactions, vol. 156, no. 2-3, pp. 131–140, 2005.
[4]  W. Maret and H. H. Sandstead, “Zinc requirements and the risks and benefits of zinc supplementation,” Journal of Trace Elements in Medicine and Biology, vol. 20, no. 1, pp. 3–18, 2006.
[5]  M. Murakami and T. Hirano, “Intracellular zinc homeostasis and zinc signaling,” Cancer Science, vol. 99, no. 8, pp. 1515–1522, 2008.
[6]  M. Hambidge, “Human zinc deficiency,” Journal of Nutrition, vol. 130, no. 5, pp. 1344S–1349S, 2000.
[7]  R. M. Welch, “Biotechnology, biofortification, and global health,” Food and Nutrition Bulletin, vol. 26, no. 4, pp. 419–421, 2005.
[8]  B. Teucher, M. Olivares, and H. Cori, “Enhancers of iron absorption: ascorbic acid and other organic acids,” International Journal for Vitamin and Nutrition Research, vol. 74, no. 6, pp. 403–419, 2004.
[9]  C. Coudray, M. Rambeau, C. Feillet-Coudray et al., “Study of magnesium bioavailability from ten organic and inorganic Mg salts in Mg-depleted rats using a stable isotope approach,” Magnesium Research, vol. 18, no. 4, pp. 215–223, 2005.
[10]  V. K. Mazo, I. V. Gmoshinski, and S. N. Zorin, “New food sources of essential trace elements produced by biotechnology facilities,” Biotechnology Journal, vol. 2, no. 10, pp. 1297–1305, 2007.
[11]  J. C. Peters and D. C. Mahan, “Effects of dietary organic and inorganic trace mineral levels on sow reproductive performances and daily mineral intakes over six parities,” Journal of Animal Science, vol. 86, no. 9, pp. 2247–2260, 2008.
[12]  M. Navarro-Alarcon and C. Cabrera-Vique, “Selenium in food and the human body: a review,” Science of the Total Environment, vol. 400, no. 1–3, pp. 115–141, 2008.
[13]  S. Qin, J. Gao, and K. Huang, “Effects of different selenium sources on tissue selenium concentrations, blood GSH-Px activities and plasma interleukin levels in finishing lambs,” Biological Trace Element Research, vol. 116, no. 1, pp. 91–102, 2007.
[14]  P. Slavik, J. Illek, M. Brix, J. Hlavicova, R. Rajmon, and F. Jilek, “Influence of organic versus inorganic dietary selenium supplementation on the concentration of selenium in colostrum, milk and blood of beef cows,” Acta Veterinaria Scandinavica, vol. 50, no. 1, pp. 43–48, 2008.
[15]  M. De Vrese and J. Schrezenmeir, “Probiotics, prebiotics, and synbiotics,” Advances in Biochemical Engineering/Biotechnology, vol. 111, pp. 1–66, 2008.
[16]  M. Rossi, A. Amaretti, and S. Raimondi, “Folate production by probiotic bacteria,” Nutrients, vol. 3, no. 1, pp. 118–134, 2011.
[17]  L. Roncaglia, A. Amaretti, S. Raimondi, A. Leonardi, and M. Rossi, “Role of bifidobacteria in the activation of the lignan secoisolariciresinol diglucoside,” Applied Microbiology and Biotechnology, vol. 92, no. 1, pp. 159–168, 2011.
[18]  A. Amaretti, M. di Nunzio, A. Pompei, S. Raimondi, M. Rossi, and A. Bordoni, “Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities,” Applied Microbiology and Biotechnology, vol. 97, no. 2, pp. 809–817, 2013.
[19]  J. Mrv?i?, T. Prebeg, L. Bari?i?, D. Stanzer, V. Ba?un-Drùina, and V. Stehlik-Tomas, “Zinc binding by Lactic acid bacteria,” Food Technology and Biotechnology, vol. 47, no. 4, pp. 381–388, 2009.
[20]  B. Lonnerdal, “Dietary factors influencing zinc absorbtion,” Journal of Nutrition, vol. 130, no. 5, pp. 1378S–1383S, 2000.
[21]  P. Schlegel and W. Windisch, “Bioavailability of zinc glycinate in comparison with zinc sulphate in the presence of dietary phytate in an animal model with 65Zn labelled rats,” Journal of Animal Physiology and Animal Nutrition, vol. 90, no. 5-6, pp. 216–222, 2006.
[22]  B. Sandstrom and A. Cederblad, “Zinc absorption from composite meals. II. Influence of the main protein source,” American Journal of Clinical Nutrition, vol. 33, no. 8, pp. 1778–1783, 1980.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133