全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Integrated Multiscale Mechanistic Model for Cancer Drug Therapy

DOI: 10.5402/2012/818492

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we established a multiscale mechanistic model for studying drug delivery, biodistribution, and therapeutic effects of cancer drug therapy in order to identify optimal treatment strategies. Due to the specific characteristics of cancer, our proposed model focuses on drug effects on malignant solid tumor and specific internal organs as well as the intratumoral and regional extracellular microenvironments. At the organ level, we quantified drug delivery based on a multicompartmental model. This model will facilitate the analysis and prediction of organ toxicity and provide important pharmacokinetic information with regard to drug clearance rates. For the analysis of intratumoral microenvironment which is directly related to blood drug concentrations and tumor properties, we constructed a drug distribution model using diffusion-convection solute transport to study temporal/spatial variations of drug concentration. With this information, our model incorporates signaling pathways for the analysis of antitumor response with drug combinations at the extracellular level. Moreover, changes in tumor size, cellular proliferation, and apoptosis induced by different drug treatment conditions are studied. Therefore, the proposed multi-scale model could be used to understand drug clinical actions, study drug therapy-antitumor effects, and potentially identify optimal combination drug therapy. Numerical simulations demonstrate the proposed system's effectiveness. 1. Introduction Cancer disease remains a leading cause of high morbidity and mortality in both adults and children. Despite extensive efforts to discover and develop effective drugs, very few promising candidates currently exist in the development pipeline. Traditional methods for developing and testing new drugs usually involve a series of controlled experiments on groups of selected healthy volunteers to establish the relationship between dose and therapeutic effects for a given drug candidate. Traditional drug development methods are time and resource intensive and carry substantial risk for adverse effects. Hence a more efficient approach is urgently needed. Fortunately, cancer research has undergone dramatic changes recently. One of the most important changes is the application of computational modeling for pharmacokinetics/pharmacodynamics (PK/PD) analysis [1, 2]. PK model can describe or predict the time course of drug concentration in different body compartments like blood and heart, and so forth. In contrast, PD models focus on time course of drug effects at the site of action (Figure

References

[1]  P. Chaikin, G. R. Rhodes, R. Bruno, S. Rohatagi, and C. Natarajan, “Pharmacokinetics/pharmacodynamics in drug development: an industrial perspective,” Journal of Clinical Pharmacology, vol. 40, no. 12, pp. 1428–1438, 2000.
[2]  J. Dingemanse and S. Appel-Dingemanse, “Integrated pharmacokinetics and pharmacodynamics in drug development,” Clinical Pharmacokinetics, vol. 46, no. 9, pp. 713–737, 2007.
[3]  J. Y. Chien, S. Friedrich, M. A. Heathman, D. P. de Alwis, and V. Sinha, “Pharmacokinetics/pharmacodynamics and the stages of drug development: role of modeling and simulation,” AAPS Journal, vol. 7, no. 3, pp. E544–E559, 2005.
[4]  G. L. Dickinson, S. Rezaee, N. J. Proctor, M. S. Lennard, G. T. Tucker, and A. Rostami-Hodjegan, “Incorporating in vitro information on drug metabolism into clinical trial simulations to assess the effect of CYP2D6 polymorphism on pharmacokinetics and pharmacodynamics: dextromethorphan as a model application,” Journal of Clinical Pharmacology, vol. 47, no. 2, pp. 175–186, 2007.
[5]  A. Bangs, “Predictive biosimulation and virtual patients in pharmaceutical R and D,” Studies in Health Technology and Informatics, vol. 111, pp. 37–42, 2005.
[6]  U. Korf, C. Lobke, O. Sahin et al., “Reverse-phase protein arrays for application-orientated cancer research,” Proteomics—Clinical Applications, vol. 3, no. 10, pp. 1140–1150, Oct 2009.
[7]  H. Peng, J. Wen, H. Li, J. Chang, and X. Zhou, “Drug inhibition profile prediction for NFκB pathway in multiple myeloma,” PLoS ONE, vol. 6, no. 3, article e14750, 2011.
[8]  H. M. Peng, J. G. Wen, C. C. Chang, and X. B. Zhou, “Systematic modeling study on mechanism of p38 MAPK activation in MDS,” in The Eighteenth International Conference on Intelligent Systems for Molecular Biology (ISMB 2010), Boston,USA, 2010.
[9]  A. P. Li, “Screening for human ADME/Tox drug properties in drug discovery,” Drug Discovery Today, vol. 6, no. 7, pp. 357–366, 2001.
[10]  S. A. Roberts, “Drug metabolism and pharmacokinetics in drug discovery,” Current Opinion in Drug Discovery and Development, vol. 6, no. 1, pp. 66–80, 2003.
[11]  S. Ramat and G. Magenes, “Latency detection in motor responses: a model-based approach with genetic algorithm optimization,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 10, pp. 2015–2023, 2006.
[12]  A. R. Anderson and M. A. Chaplain, “Continuous and discrete mathematical models of tumor-induced angiogenesis,” Bulletin of Mathematical Biology, vol. 60, no. 5, pp. 857–899, 1998.
[13]  M. A. Chaplain, S. R. McDougall, and A. R. Anderson, “Mathematical modeling of tumor-induced angiogenesis,” Annual Review of Biomedical Engineering, vol. 8, pp. 233–257, 2006.
[14]  C. C. Wang, J. Li, C. S. Teo, and T. Lee, “The delivery of BCNU to brain tumors,” Journal of Controlled Release, vol. 61, no. 1-2, pp. 21–41, 1999.
[15]  E. P. Salathe and K. N. An, “A mathematical analysis of fluid movement across capillary walls,” Microvascular Research, vol. 11, no. 1, pp. 1–23, 1976.
[16]  R. K. Jain and L. T. Baxter, “Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure,” Cancer Research, vol. 48, no. 24 I, pp. 7022–7032, 1988.
[17]  L. T. Baxter and R. K. Jain, “Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection,” Microvascular Research, vol. 37, no. 1, pp. 77–104, 1989.
[18]  F. R. Curry, “Permeability measurements in an individually perfused capillary: the "squid axon" of the microcirculation,” Experimental Physiology, vol. 93, no. 4, pp. 444–446, 2008.
[19]  A. Eladdadi and D. Isaacson, “A mathematical model for the effects of HER2 overexpression on cell proliferation in breast cancer,” Bulletin of Mathematical Biology, vol. 70, no. 6, pp. 1707–1729, 2008.
[20]  X. Zhu, X. Zhou, M. T. Lewis, L. Xia, and S. Wong, “Cancer stem cell, niche and EGFR decide tumor development and treatment response: a bio-computational simulation study,” Journal of Theoretical Biology, vol. 269, no. 1, pp. 138–149, 2011.
[21]  Z. Miao, G. Ren, H. Liu et al., “An engineered knottin peptide labeled with 18F for PET imaging of integrin expression,” Bioconjugate Chemistry, vol. 20, no. 12, pp. 2342–2347, 2009.
[22]  P. A. Vasey, M. Gore, R. Wilson et al., “A phase Ib trial of docetaxel, carboplatin and erlotinib in ovarian, fallopian tube and primary peritoneal cancers,” British Journal of Cancer, vol. 98, no. 11, pp. 1774–1780, 2008.
[23]  M. Milosevic, A. Fyles, D. Hedley et al., “Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements,” Cancer Research, vol. 61, no. 17, pp. 6400–6405, 2001.
[24]  H. W. Lo, S. C. Hsu, and M. C. Hung, “EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization,” Breast Cancer Research and Treatment, vol. 95, no. 3, pp. 211–218, 2006.
[25]  S. Pennock and Z. Wang, “Stimulation of cell proliferation by endosomal epidermal growth factor receptor as revealed through two distinct phases of signaling,” Molecular and Cellular Biology, vol. 23, no. 16, pp. 5803–5815, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133