We present a delay-differential equation model with optimal control that describes the interactions between human immunodeficiency virus (HIV), CD4+ T cells, and cell-mediated immune response. Both the treatment and the intracellular delay are incorporated into the model in order to improve therapies to cure HIV infection. The optimal controls represent the efficiency of drug treatment in inhibiting viral production and preventing new infections. Existence for the optimal control pair is established, Pontryagin’s maximum principle is used to characterize these optimal controls, and the optimality system is derived. For the numerical simulation, we propose a new algorithm based on the forward and backward difference approximation. 1. Introduction Human immunodeficiency virus (HIV) is a lentivirus that causes acquired immunodeficiency syndrome (AIDS), a condition in humans in which the immune system begins to fail, leading to life-threatening opportunistic infections. There are several other ways the infection can transfer, for example, open wound, saliva, and ulcers. There are some antiretroviral (ARV) drugs available nowadays which help the immune system in preventing the infection due to HIV even though it is not possible to cure it. Reverse transcriptase inhibitors (RTIs) are one of the chemotherapies which oppose the conversion of RNA of the virus to DNA (reverse transcription), so that the viral population will be minimum and on the other hand the CD count remains higher and the host can survive. Another one is the protease inhibitors (PIs) which prevent the production of viruses from the actively infected CD T cells. In the literature, many mathematical models have been developed in order to understand the dynamics of HIV infection [1–6]. In addition, optimal control methods have been applied to the derivation of optimal therapies for this HIV infection [7–13]. All these methods are based on HIV models which ignore the intracellular delay by assuming that the infectious process is instantaneous; that is, in the very moment that the virus enters an uninfected cell, this one starts to produce virus particles, and we know that this is not biologically reasonable. In this paper, we consider the mathematical model for HIV infection with intracellular delay and cell-mediated immune response presented by Zhu and Zou in [6] and we introduce two controls, one simulating effect of RTIs and the other control simulating effect of PIs, incorporating drug efficacy. The intracellular delay represents the time needed for infected cells to produce virions after
References
[1]
K. Hattaf and N. Yousfi, “Dynamics of HIV infection model with therapy and cure rate,” International Journal of Tomography and Statistics, vol. 16, no. 11, pp. 74–80, 2011.
[2]
K. Hattaf, N. Yousfi, and A. Tridane, “Mathematical analysis of a virus dynamics model with general incidence rate and cure rate,” Nonlinear Analysis: Real World Applications, vol. 13, no. 4, pp. 1866–1872, 2012.
[3]
A. S. Perelson and P. W. Nelson, “Mathematical analysis of HIV-1 dynamics in vivo,” SIAM Review, vol. 41, no. 1, pp. 3–44, 1999.
[4]
A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, and D. D. Ho, “HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,” Science, vol. 271, no. 5255, pp. 1582–1586, 1996.
[5]
X. Zhou, X. Song, and X. Shi, “A differential equation model of HIV infection of CD4+ T-cells with cure rate,” Journal of Mathematical Analysis and Applications, vol. 342, no. 2, pp. 1342–1355, 2008.
[6]
H. Zhu and X. Zou, “Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay,” Discrete and Continuous Dynamical Systems, Series B, vol. 12, no. 2, pp. 511–524, 2009.
[7]
K. Hattaf and N. Yousfi, “Two optimal treatments of HIV infection model,” World Journal of Modelling and Simulation, vol. 8, pp. 27–36, 2012.
[8]
K. R. Fister, S. Lenhart, and J. S. McNally, “Optimizing chemotherapy in an HIV model,” Electronic Journal of Differential Equations, vol. 1998, pp. 1–12, 1998.
[9]
H. R. Joshi, “Optimal control of an HIV immunology model,” Optimal Control Applications and Methods, vol. 23, no. 4, pp. 199–213, 2002.
[10]
J. Karrakchou, M. Rachik, and S. Gourari, “Optimal control and infectiology: application to an HIV/AIDS model,” Applied Mathematics and Computation, vol. 177, no. 2, pp. 807–818, 2006.
[11]
D. Kirschner, S. Lenhart, and S. Serbin, “Optimal control of the chemotherapy of HIV,” Journal of mathematical biology, vol. 35, no. 7, pp. 775–792, 1997.
[12]
H. D. Kwon, “Optimal treatment strategies derived from a HIV model with drug-resistant mutants,” Applied Mathematics and Computation, vol. 188, no. 2, pp. 1193–1204, 2007.
[13]
R. V. Culshaw, S. Ruan, and R. J. Spiteri, “Optimal HIV treatment by maximising immune response,” Journal of Mathematical Biology, vol. 48, no. 5, pp. 545–562, 2004.
[14]
W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, NY, USA, 1975.
[15]
D. L. Lukes, Differential Equations: Classical To Controlled, vol. 162 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1982.
[16]
L. G?llmann, D. Kern, and H. Maurer, “Optimal control problems with delays in state and control variables subject to mixed control-state constraints,” Optimal Control Applications and Methods, vol. 30, no. 4, pp. 341–365, 2009.