全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Integrating Imaging Data into Predictive Biomathematical and Biophysical Models of Cancer

DOI: 10.5402/2012/287394

Full-Text   Cite this paper   Add to My Lib

Abstract:

While there is a mature literature on biomathematical and biophysical modeling in cancer, many of the existing approaches are not of clinical utility, as they require input data that are extremely difficult to obtain in an intact organism, and/or require a large number of assumptions on the free parameters included in the models. Thus, there has only been very limited application of such models to solve problems of clinical import. More recently, however, there has been increased activity at the interface of quantitative, noninvasive imaging data, and tumor mathematical modeling. In addition to reporting on bulk tumor morphology and volume, emerging imaging techniques can quantitatively report on for example tumor vascularity, glucose metabolism, cell density and proliferation, and hypoxia. In this paper, we first motivate the problem of predicting therapy response by highlighting some (acknowledged) shortcomings in existing methods. We then provide introductions to a number of representative quantitative imaging methods and describe how they are currently (and potentially can be) used to initialize and constrain patient specific mathematical and biophysical models of tumor growth and treatment response, thereby increasing the clinical utility of such approaches. We conclude by highlighting some of the exciting research directions when one integrates quantitative imaging and tumor modeling. 1. Introduction The ability to identify—early in the course of therapy—patients that are not responding to a given therapeutic regimen is extraordinarily important. In addition to limiting patients’ exposure to the toxicities associated with unsuccessful therapies, it would allow patients the opportunity to switch to a potentially more efficacious approach. Unfortunately, existing methods of determining early response are inadequate. In particular, the current standard-of-care imaging assessment of tumor response to treatment is based on the Response Evaluation Criteria in Solid Tumors (RECIST, [1]). RECIST offers a simplified, practical method for extracting the basic morphological features of imaging data by assessing the overall tumor burden at baseline and comparing that measurement to subsequent measurements obtained during the course of therapy. We now present the salient features of RECIST in order to identify weaknesses that the integration of imaging and mathematical modeling can potentially address. High-resolution images (typically computed tomography (CT) or magnetic resonance imaging (MRI)) are acquired at baseline before treatment as commenced. In these

References

[1]  P. Therasse, S. G. Arbuck, E. A. Eisenhauer et al., “New guidelines to evaluate the response to treatment in solid tumors,” Journal of the National Cancer Institute, vol. 92, no. 3, pp. 205–216, 2000.
[2]  L. R. Arlinghaus, X. Li, M. Levy et al., “Current and future trends in magnetic resonance imaging assessments of the response of breast tumors to neoadjuvant chemotherapy,” Journal of Oncology, vol. 2010, Article ID 919620, 17 pages, 2010.
[3]  R. L. Wahl, H. Jacene, Y. Kasamon, and M. A. Lodge, “From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors,” Journal of Nuclear Medicine, vol. 50, supplement 1, pp. 122S–150S, 2009.
[4]  M.-C. Asselin, J. P. B. O'Connor, R. Boellaard, N. A. Thacker, and A. Jackson, “Quantifying heterogeneity in human tumours using MRI and PET,” European Journal of Cancer, vol. 48, no. 4, pp. 447–455, 2012.
[5]  E. A. Eisenhauer, P. Therasse, J. Bogaerts et al., “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” European Journal of Cancer, vol. 45, no. 2, pp. 228–247, 2009.
[6]  A. R. A. Anderson and V. Quaranta, “Integrative mathematical oncology,” Nature Reviews Cancer, vol. 8, no. 3, pp. 227–234, 2008.
[7]  K. A. Rejniak and A. R. A. Anderson, “State of the art in computational modelling of cancer,” Mathematical Medicine and Biology, vol. 29, no. 1, pp. 1–2, 2012.
[8]  A. H. Juffer, U. Marin, O. Niemitalo, and J. Koivukangas, “Computer modeling of brain tumor growth,” Mini Reviews in Medicinal Chemistry, vol. 8, no. 14, pp. 1494–1506, 2008.
[9]  T. E. Yankeelov, J. C. Gore, and J. C. Dynamic, “Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples,” Current Medical Imaging Reviews, vol. 3, no. 2, pp. 91–107, 2009.
[10]  E. S. Paulson and K. M. Schmainda, “Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors,” Radiology, vol. 249, no. 2, pp. 601–613, 2008.
[11]  H. Dongfeng, M. Daqing, and J. Erhu, “Dynamic breast magnetic resonance imaging: pretreatment prediction of tumor response to neoadjuvant chemotherapy,” Clinical Breast Cancer, vol. 12, no. 2, pp. 94–101, 2012.
[12]  J. Guo, W. E. Reddick, J. O. Glass et al., “Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma,” Cancer, vol. 118, no. 15, pp. 3776–3785, 2012.
[13]  M. E. Loveless, D. Lawson, M. Collins et al., “Comparisons of the efficacy of a Jak1/2 inhibitor (AZD1480) with a VEGF signaling inhibitor (cediranib) and sham treatments in mouse tumors using DCE-MRI, DW-MRI, and histology,” Neoplasia, vol. 14, no. 1, pp. 54–64, 2012.
[14]  M. A. Zahra, L. T. Tan, A. N. Priest et al., “Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix csancer,” International Journal of Radiation Oncology Biology Physics, vol. 74, no. 3, pp. 766–773, 2009.
[15]  A. Einstein, “über die von der molekularkinetischen Theorie der W?rme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Annalen der Physik, vol. 322, no. 8, pp. 549–560, 1905.
[16]  A. W. Anderson, J. Xie, J. Pizzonia, R. A. Bronen, D. D. Spencer, and J. C. Gore, “Effects of cell volume fraction changes on apparent diffusion in human cells,” Magnetic Resonance Imaging, vol. 18, no. 6, pp. 689–695, 2000.
[17]  S. Bonekamp, C. P. Corona-Villalobos, and I. R. Kamel, “Oncologic applications of diffusion-weighted MRI in the body,” Journal of Magnetic Resonance Imaging, vol. 35, no. 2, pp. 257–279, 2012.
[18]  C. Fu, D. Bian, F. Liu, X. Feng, W. Du, and X. Wang, “The value of diffusion-weighted magnetic resonance imaging in assessing the response of locally advanced cervical cancer to neoadjuvant chemotherapy,” International Journal of Gynecological Cancer, vol. 22, no. 6, pp. 1037–1043, 2012.
[19]  S. Yoshida, F. Koga, S. Kobayashi et al., “Role of diffusion-weighted magnetic resonance imaging in predicting sensitivity to chemoradiotherapy in muscle-invasive bladder cancer,” International Journal of Radiation Oncology Biology Physics, vol. 83, no. 1, pp. e21–e27, 2012.
[20]  D. M. Patterson, A. R. Padhani, and D. J. Collins, “Technology insight: water diffusion MRI: a potential new biomarker of response to cancer therapy,” Nature Clinical Practice Oncology, vol. 5, no. 4, pp. 220–233, 2008.
[21]  P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Biophysical Journal, vol. 66, no. 1, pp. 259–267, 1994.
[22]  S. Mori and P. C. van Zijl, “Fiber tracking: principles and strategies: a technical review,” NMR in Biomedicine, vol. 15, no. 7-8, pp. 468–480, 2002.
[23]  X. Golay, H. Jiang, P. C. van Zijl, and S. Mori, “High-resolution isotropic 3D diffusion tensor imaging of the human brain,” Magnetic Resonance in Medicine, vol. 47, no. 5, pp. 837–843, 2002.
[24]  G. J. M. Parker, C. A. M. Wheeler-Kingshott, and G. J. Barker, “Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging,” IEEE Transactions on Medical Imaging, vol. 21, no. 5, pp. 505–512, 2002.
[25]  A. Mishra, Y. Lu, J. Meng, A. W. Anderson, and Z. Ding, “Unified framework for anisotropic interpolation and smoothing of diffusion tensor images,” NeuroImage, vol. 31, no. 4, pp. 1525–1535, 2006.
[26]  E. R. Gerstner and A. G. Sorensen, “Diffusion and diffusion tensor imaging in brain cancer,” Seminars in Radiation Oncology, vol. 21, no. 2, pp. 141–146, 2011.
[27]  A. Roniotis, G. C. Manikis, V. Sakkalis, M. E. Zervakis, I. Karatzanis, and K. Marias, “High-grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlases,” IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 2, Article ID 6041031, pp. 255–263, 2012.
[28]  S. Kim, S. Pickup, O. Hsu, and H. Poptani, “Diffusion tensor MRI in rat models of invasive and well-demarcated brain tumors,” NMR in Biomedicine, vol. 21, no. 3, pp. 208–216, 2008.
[29]  D. Leclercq, C. Delmaire, N. M. de Champfleur, J. Chiras, and S. Lehéricy, “Diffusion tractography: methods, validation and applications in patients with neurosurgical lesions,” Neurosurgery Clinics of North America, vol. 22, no. 2, pp. 253–268, 2011.
[30]  E. L. Rosen, W. B. Eubank, and D. A. Mankoff, “FDG PET, PET/CT, and breast cancer imaging,” Radiographics, vol. 27, supplement 1, pp. S215–S229, 2007.
[31]  E. Skoura, I. E. Datseris, I. Platis, G. Oikonomopoulos, and K. N. Syrigos, “Role of positron emission tomography in the early prediction of response to chemotherapy in patients with non-small-cell lung cancer,” Clinical Lung Cancer, vol. 13, no. 3, pp. 181–187, 2012.
[32]  T. Cazaentre, F. Morschhauser, M. Vermandel et al., “Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-hodgkin lymphoma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 3, pp. 494–504, 2010.
[33]  J. Duch, D. Fuster, M. Mu?oz et al., “18F-FDG PET/CT for early prediction of response to neoadjuvant chemotherapy in breast cancer,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 10, pp. 1551–1557, 2009.
[34]  F. Lordick, “The role of PET in predicting response to chemotherapy in oesophago-gastric cancer,” Acta Gastro-Enterologica Belgica, vol. 74, no. 4, pp. 530–535, 2011.
[35]  J. Czernin, “Oncological applications of FDG-PET,” in PET: Molecular Imaging and Its Biological Applications, M. Phelps, Ed., pp. 270–321, Springer, New York, NY, USA, 2004.
[36]  D. A. Mankoff, A. F. Shields, and K. A. Krohn, “PET imaging of cellular proliferation,” Radiologic Clinics of North America, vol. 43, no. 1, pp. 153–167, 2005.
[37]  A. Salskov, V. S. Tammisetti, J. Grierson, and H. Vesselle, “FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3′-deoxy-3′-[18F]Fluorothymidine,” Seminars in Nuclear Medicine, vol. 37, no. 6, pp. 429–439, 2007.
[38]  L. Kenny, R. C. Coombes, D. M. Vigushin, A. Al-Nahhas, S. Shousha, and E. O. Aboagye, “Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 9, pp. 1339–1347, 2007.
[39]  H. J. Sohn, Y. J. Yang, J. S. Ryu et al., “[18F]fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung,” Clinical Cancer Research, vol. 14, no. 22, pp. 7423–7429, 2008.
[40]  D. Soloviev, D. Lewis, D. Honess, and E. Aboagye, “[18F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment,” European Journal of Cancer, vol. 48, no. 4, pp. 416–424, 2012.
[41]  J. Overgaard, “Hypoxic radiosensitization: adored and ignored,” Journal of Clinical Oncology, vol. 25, no. 26, pp. 4066–4074, 2007.
[42]  M. S?rensen, M. R. Horsman, P. Cumming, O. L. Munk, and S. Keiding, “Effect of intratumoral heterogeneity in oxygenation status on FMISO PET, autoradiography, and electrode Po2 measurements in murine tumors,” International Journal of Radiation Oncology Biology Physics, vol. 62, no. 3, pp. 854–861, 2005.
[43]  J. D. Chapman, “Hypoxic sensitizers—implications for radiation therapy,” The New England Journal of Medicine, vol. 301, no. 26, pp. 1429–1432, 1979.
[44]  W. J. Koh, J. S. Rasey, M. L. Evans et al., “Imaging of hypoxia in human tumors with [F-18]Fluoromisonidazole,” International Journal of Radiation Oncology Biology Physics, vol. 22, no. 1, pp. 199–212, 1992.
[45]  K. Hirata, S. Terasaka, T. Shiga et al., “18F-fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 5, pp. 760–770, 2012.
[46]  M. Kikuchi, T. Yamane, S. Shinohara et al., “18F-fluoromisonidazole positron emission tomography before treatment is a predictor of radiotherapy outcome and survival prognosis in patients with head and neck squamous cell carcinoma,” Annals of Nuclear Medicine, vol. 25, no. 9, pp. 1–9, 2011.
[47]  C. Oehler, J. A. O'Donoghue, J. Russell et al., “18F-fluromisonidazole PET imaging as a biomarker for the response to 5,6-dimethylxanthenone-4-acetic acid in colorectal xenograft tumors,” Journal of Nuclear Medicine, vol. 52, no. 3, pp. 437–444, 2011.
[48]  R. Bejot, V. Kersemans, C. Kelly, L. Carroll, R. C. King, and V. Gouverneur, “Pre-clinical evaluation of a 3-nitro-1,2,4-triazole analogue of [18F]FMISO as hypoxia-selective tracer for PET,” Nuclear Medicine and Biology, vol. 37, no. 5, pp. 565–575, 2010.
[49]  S. T. Lee and A. M. Scott, “Hypoxia positron emission tomography imaging With 18F-Fluoromisonidazole,” Seminars in Nuclear Medicine, vol. 37, no. 6, pp. 451–461, 2007.
[50]  Y. Yoshii, M. Yoneda, M. Ikawa et al., “Radiolabeled Cu-ATSM as a novel indicator of overreduced intracellular state due to mitochondrial dysfunction: studies with mitochondrial DNA-less ρ0 cells and cybrids carrying MELAS mitochondrial DNA mutation,” Nuclear Medicine and Biology, vol. 39, no. 2, pp. 177–185, 2012.
[51]  A. Obata, E. Yoshimi, A. Waki et al., “Retention mechanism of hypoxia selective nuclear imaging/radiotherapeutic agent Cu-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) in tumor cells,” Annals of Nuclear Medicine, vol. 15, no. 6, pp. 499–504, 2001.
[52]  H. Kurihara, N. Honda, Y. Kono, and Y. Arai, “Radiolabelled agents for PET imaging of tumor hypoxia,” Current Medicinal Chemistry, vol. 19, no. 20, pp. 3282–3289, 2012.
[53]  Y. Minagawa, K. Shizukuishi, I. Koike et al., “Assessment of tumor hypoxia by 62Cu-ATSM PET/CT as a predictor of response in head and neck cancer: a pilot study,” Annals of Nuclear Medicine, vol. 25, no. 5, pp. 1–7, 2011.
[54]  D. W. Dietz, F. Dehdashti, P. W. Grigsby et al., “Tumor hypoxia detected by positron emission tomography with 60Cu-ATSM as a predictor of response and survival in patients undergoing neoadjuvant chemoradiotherapy for rectal carcinoma: a pilot study,” Diseases of the Colon and Rectum, vol. 51, no. 11, pp. 1641–1648, 2008.
[55]  F. Dehdashti, P. W. Grigsby, J. S. Lewis, R. Laforest, B. A. Siegel, and M. J. Welch, “Assessing tumor hypoxia in cervical cancer by PET with 60Cu- labeled diacetyl-bis(N4-methylthiosemicarbazone),” Journal of Nuclear Medicine, vol. 49, no. 2, pp. 201–205, 2008.
[56]  F. Dehdashti, M. A. Mintun, J. S. Lewis et al., “In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 30, no. 6, pp. 844–850, 2003.
[57]  J. P. Holland, J. S. Lewis, and F. Dehdashti, “Assessing tumor hypoxia by positron emission tomography with Cu-ATSM,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 53, no. 2, pp. 193–200, 2009.
[58]  C. Catana, D. Procissi, Y. Wu et al., “Simultaneous in vivo positron emission tomography and magnetic resonance imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 10, pp. 3705–3710, 2008.
[59]  M. S. Judenhofer, H. F. Wehrl, D. F. Newport et al., “Simultaneous PET-MRI: a new approach for functional and morphological imaging,” Nature Medicine, vol. 14, no. 4, pp. 459–465, 2008.
[60]  T. E. Yankeelov, T. E. Peterson, R. G. Abramson et al., “Simultaneous PET-MRI in oncology: a solution looking for a problem?” Magnetic Resonance Imaging, vol. 30, no. 9, pp. 1342–1356, 2012.
[61]  A. Boss, S. Bisdas, A. Kolb et al., “Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT,” Journal of Nuclear Medicine, vol. 51, no. 8, pp. 1198–1205, 2010.
[62]  C. Buchbender, T. A. Heusner, T. C. Lauenstein, A. Bockisch, and G. Antoch, “Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis,” Journal of Nuclear Medicine, vol. 53, no. 6, pp. 928–938, 2012.
[63]  C. Buchbender, T. A. Heusner, T. C. Lauenstein, A. Bockisch, and G. Antoch, “Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma,” Journal of Nuclear Medicine, vol. 53, no. 8, pp. 1244–1252, 2012.
[64]  S. Jbabdi, E. Mandonnet, H. Duffau et al., “Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging,” Magnetic Resonance in Medicine, vol. 54, no. 3, pp. 616–624, 2005.
[65]  D. E. Woodward, J. Cook, P. Tracqui, G. C. Cruywagen, J. D. Murray, and E. C. Alvord, “A mathematical model of glioma growth: the effect of extent of surgical resection,” Cell Proliferation, vol. 29, no. 6, pp. 269–288, 1996.
[66]  P. K. Burgess, P. M. Kulesa, J. D. Murray, and E. C. Alvord Jr., “The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas,” Journal of Neuropathology and Experimental Neurology, vol. 56, no. 6, pp. 704–713, 1997.
[67]  O. Clatz, M. Sermesant, P. Y. Bondiau et al., “Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation,” IEEE Transactions on Medical Imaging, vol. 24, no. 10, pp. 1334–1346, 2005.
[68]  P. Y. Bondiau, O. Clatz, M. Sermesant et al., “Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging,” Physics in Medicine and Biology, vol. 53, no. 4, pp. 879–893, 2008.
[69]  M. I. Miga, K. D. Paulsen, F. Kennedy, P. Hoopes, A. Hartov, and D. Roberts, “In vivo analysis of heterogeneous brain deformation computation for model updated image guidance,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 3, no. 2, pp. 129–146, 2000.
[70]  C. H. Wang, J. K. Rockhill, M. Mrugala et al., “Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model,” Cancer Research, vol. 69, no. 23, pp. 9133–9140, 2009.
[71]  K. R. Swanson, H. L. P. Harpold, D. L. Peacock et al., “Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: a proof of principle,” Clinical Oncology, vol. 20, no. 4, pp. 301–308, 2008.
[72]  R. Fisher, “The wave of advance of advantageous genes,” Annals of Eugenics, vol. 7, no. 4, pp. 355–369, 1937.
[73]  R. Rockne, E. C. Alvord Jr., J. K. Rockhill, and K. R. Swanson, “A mathematical model for brain tumor response to radiation therapy,” Journal of Mathematical Biology, vol. 58, no. 4-5, pp. 561–578, 2009.
[74]  E. Hall, Radiobiology for the Radiologist, Lippincott, Philadelphia, Pa, USA, 1994.
[75]  R. Rockne, J. K. Rockhill, M. Mrugala et al., “Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach,” Physics in Medicine and Biology, vol. 55, no. 12, pp. 3271–3285, 2010.
[76]  N. C. Atuegwu, L. R. Arlinghaus, X. Li et al., “Integration of diffusion-weighted MRI data and a simple mathematical model to predict breast tumor cellularity during neoadjuvant chemotherapy,” Magnetic Resonance in Medicine, vol. 66, no. 6, pp. 1689–1696, 2011.
[77]  N. C. Atuegwu, D. C. Colvin, M. E. Loveless, L. Xu, J. C. Gore, and T. E. Yankeelov, “Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth,” Physics in Medicine and Biology, vol. 57, no. 1, pp. 225–240, 2012.
[78]  N. C. Atuegwu, J. C. Gore, and T. E. Yankeelov, “The integration of quantitative multi-modality imaging data into mathematical models of tumors,” Physics in Medicine and Biology, vol. 55, no. 9, pp. 2429–2449, 2010.
[79]  T. E. Yankeelov, N. C. Atuegwu, N. G. Deane, and J. C. Gore, “Modeling tumor growth and treatment response based on quantitative imaging data,” Integrative Biology, vol. 2, no. 7-8, pp. 338–345, 2010.
[80]  N. C. A. L. Atuegwu, X. Li, E. B. Welch, A. B. Chakravarthy, and T. E. Yankeelov, Parameterizing the Logistic Model of Tumor Growth by DW-MRI and DCE-MRI to Predict Breast Tumor Cellularity During Neoadjuvant Chemotherapy, Montreal, Canada, 2012.
[81]  B. M. Ellingson, P. S. Laviolette, S. D. Rand et al., “Spatially quantifying microscopic tumor invasion and proliferation using a voxel-wise solution to a glioma growth model and serial diffusion MRI,” Magnetic Resonance in Medicine, vol. 65, no. 4, pp. 1132–1144, 2011.
[82]  B. M. Ellingson, T. F. Cloughesy, A. Lai, P. L. Nghiemphu, and W. B. Pope, “Cell invasion, motility, and proliferation level estimate (CIMPLE) maps derived from serial diffusion MR images in recurrent glioblastoma treated with bevacizumab,” Journal of Neuro-Oncology, vol. 105, no. 1, pp. 91–101, 2011.
[83]  B. Titz and R. Jeraj, “An imaging-based tumour growth and treatment response model: investigating the effect of tumour oxygenation on radiation therapy response,” Physics in Medicine and Biology, vol. 53, no. 17, pp. 4471–4488, 2008.
[84]  Y. Fujibayashi, H. Taniuchi, Y. Yonekura, H. Ohtani, J. Konishi, and A. Yokoyama, “Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential,” Journal of Nuclear Medicine, vol. 38, no. 7, pp. 1155–1160, 1997.
[85]  M. D. Szeto, G. Chakraborty, J. Hadley et al., “Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas,” Cancer Research, vol. 69, no. 10, pp. 4502–4509, 2009.
[86]  S. Gu, G. Chakraborty, K. Champley et al., “Applying a patient-specific bio-mathematical model of glioma growth to develop virtual [18F]-FMISO-PET images,” Mathematical Medicine and Biology, vol. 29, no. 1, pp. 31–48, 2012.
[87]  C. Vangestel, C. van de Wiele, N. van Damme et al., “99mTc-(CO)3 His-annexin A5 micro-SPECT demonstrates increased cell death by irinotecan during the vascular normalization window caused by bevacizumab,” Journal of Nuclear Medicine, vol. 52, no. 11, pp. 1786–1794, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133