全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cellular and Biochemical Mechanisms of the Retroviral Restriction Factor SAMHD1

DOI: 10.1155/2013/728392

Full-Text   Cite this paper   Add to My Lib

Abstract:

Replication of HIV-1 and other retroviruses is dependent on numerous host proteins in the cells. Some of the host proteins, however, function as restriction factors to block retroviral infection of target cells. The host protein SAMHD1 has been identified as the first mammalian deoxynucleoside triphosphate triphosphohydrolase (dNTPase), which blocks the infection of HIV-1 and other retroviruses in non-cycling immune cells. SAMHD1 protein is highly expressed in human myeloid-lineage cells and CD4+ T-lymphocytes, but its retroviral restriction function is only observed in noncycling cells. Recent studies have revealed biochemical mechanisms of SAMHD1-mediated retroviral restriction. In this review, the latest progress on SAMHD1 research is summarized and the mechanisms by which SAMHD1 mediates retroviral restriction are analyzed. Although the physiological function of SAMHD1 is largely unknown, this review provides perspectives about the role of endogenous SAMHD1 protein in maintaining normal cellular function, such as nucleic acid metabolism and the proliferation of cells. 1. Introduction HIV-1 infection of human target cells is highly dependent on numerous host proteins to support viral replication [1, 2]. Genome-wide functional screens of HIV-1 cofactors have revealed that over two hundreds of human proteins are required for efficient HIV-1 replication in the cells [3–6]. However, during the long history of host-retrovirus interactions, primates including humans have evolved intrinsic immunity to defend against viral infection through host proteins called restriction factors, which often can be counteracted by viral proteins via intracellular degradation [7–9]. Studying those host restriction factors not only helps define the unique function of certain viral proteins in the infection and viral pathogenesis but also provides new insights into developing more effective intervention strategies to block retroviral infections. The major HIV-1 target cells supporting viral replication are activated CD4+ T-lymphocytes [10], while other cell types such as primary monocytes, dendritic cells (DCs), and macrophages also contribute to initial infection and viral transmission [11, 12]. Nondividing CD4+ T-lymphocytes and myeloid cells including monocytes, DCs, and macrophages play an important role in establishment of HIV-1 initial infection and viral transmission [10, 11]. However, these cells are refractory to postentry HIV-1 infection due to multifaceted cellular mechanisms [11, 12]. Resting CD4+ T-cells are essential for the establishment and maintenance of

References

[1]  S. P. Goff, “Host factors exploited by retroviruses,” Nature Reviews Microbiology, vol. 5, no. 4, pp. 253–263, 2007.
[2]  A. Engelman and P. Cherepanov, “The structural biology of HIV-1: mechanistic and therapeutic insights,” Nature Reviews Microbiology, vol. 10, no. 4, pp. 279–290, 2012.
[3]  A. L. Brass, D. M. Dykxhoorn, Y. Benita et al., “Identification of host proteins required for HIV infection through a functional genomic screen,” Science, vol. 319, no. 5865, pp. 921–926, 2008.
[4]  R. K?nig, Y. Zhou, D. Elleder et al., “Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication,” Cell, vol. 135, no. 1, pp. 49–60, 2008.
[5]  H. Zhou, M. Xu, Q. Huang et al., “Genome-scale RNAi screen for host factors required for HIV replication,” Cell Host and Microbe, vol. 4, no. 5, pp. 495–504, 2008.
[6]  F. D. Bushman, N. Malani, J. Fernandes et al., “Host cell factors in HIV replication: meta-analysis of genome-wide studies,” PLoS Pathogens, vol. 5, no. 5, Article ID e1000437, 2009.
[7]  P. D. Bieniasz, “Intrinsic immunity: a front-line defense against viral attack,” Nature Immunology, vol. 5, no. 11, pp. 1109–1115, 2004.
[8]  D. Wolf and S. P. Goff, “Host restriction factors blocking retroviral replication,” Annual Review of Genetics, vol. 42, pp. 143–163, 2008.
[9]  R. S. Harris and M. T. Liddament, “Retroviral restriction by APOBEC proteins,” Nature Reviews Immunology, vol. 4, no. 11, pp. 868–877, 2004.
[10]  L. Wu, “Biology of HIV mucosal transmission,” Current Opinion in HIV and AIDS, vol. 3, no. 5, pp. 534–540, 2008.
[11]  C. M. Coleman and L. Wu, “HIV interactions with monocytes and dendritic cells: viral latency and reservoirs,” Retrovirology, vol. 6, article 51, 2009.
[12]  L. Wu and V. N. KewalRamani, “Dendritic-cell interactions with HIV: infection and viral dissemination,” Nature Reviews Immunology, vol. 6, no. 11, pp. 859–868, 2006.
[13]  E. Eisele and R. F. Siliciano, “Redefining the viral reservoirs that prevent HIV-1 eradication,” Immunity, vol. 37, no. 3, pp. 377–388, 2012.
[14]  J. Luban, “Innate immune sensing of HIV-1 by dendritic cells,” Cell Host Microbe, vol. 12, no. 4, pp. 408–418, 2012.
[15]  L. Wu, “SAMHD1: a new contributor to HIV-1 restriction in resting CD4+ T-cells,” Retrovirology, vol. 9, no. 1, article 88, 2012.
[16]  A. M. Sheehy, N. C. Gaddis, J. D. Choi, and M. H. Malim, “Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein,” Nature, vol. 418, no. 6898, pp. 646–650, 2002.
[17]  M. Stremlau, C. M. Owens, M. J. Perron, M. Kiessling, P. Autissier, and J. Sodroski, “The cytoplasmic body component TRIM5α restricts HIV-1 infection in old world monkeys,” Nature, vol. 427, no. 6977, pp. 848–853, 2004.
[18]  S. J. D. Neil, T. Zang, and P. D. Bieniasz, “Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu,” Nature, vol. 451, no. 7177, pp. 425–430, 2008.
[19]  N. van Damme, D. Goff, C. Katsura et al., “The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein,” Cell Host and Microbe, vol. 3, no. 4, pp. 245–252, 2008.
[20]  R. S. Harris, J. F. Hultquist, and D. T. Evans, “The restriction factors of human immunodeficiency virus,” The Journal of Biological Chemistry, vol. 287, no. 49, pp. 40875–40883, 2012.
[21]  N. Laguette, B. Sobhian, N. Casartelli et al., “SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx,” Nature, vol. 474, no. 7353, pp. 654–657, 2011.
[22]  K. Hrecka, C. Hao, M. Gierszewska et al., “Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein,” Nature, vol. 474, no. 7353, pp. 658–661, 2011.
[23]  A. Berger, A. F. R. Sommer, J. Zwarg et al., “SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection,” PLoS Pathogens, vol. 7, no. 12, Article ID e1002425, 2011.
[24]  H. M. Baldauf, X. Pan, E. Erikson et al., “SAMHD1 restricts HIV-1 infection in resting CD4+ T cells,” Nature Medicine, vol. 18, no. 11, pp. 1682–1689, 2012.
[25]  B. Descours, A. Cribier, C. Chable-Bessia et al., “SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells,” Retrovirology, vol. 9, no. 1, article 87, 2012.
[26]  T. E. White, A. Brandariz-Nunez, J. C. Valle-Casuso et al., “Contribution of SAM and HD domains to retroviral restriction mediated by human SAMHD1,” Virology, vol. 436, no. 1, pp. 81–90, 2012.
[27]  T. Gramberg, T. Kahle, N. Bloch et al., “Restriction of diverse retroviruses by SAMHD1,” Retrovirology, vol. 10, article 26, 2013.
[28]  C. St Gelais and L. Wu, “SAMHD1: a new insight into HIV-1 restriction in myeloid cells,” Retrovirology, vol. 8, article 55, 2011.
[29]  N. Manel and D. R. Littman, “Hiding in plain sight: how HIV evades innate immune responses,” Cell, vol. 147, no. 2, pp. 271–274, 2011.
[30]  V. Planelles, “Restricted access to myeloid cells explained,” Viruses, vol. 3, no. 9, pp. 1624–1633, 2011.
[31]  Y. H. Zheng, K. T. Jeang, and K. Tokunaga, “Host restriction factors in retroviral infection: promises in virus-host interaction,” Retrovirology, vol. 9, article 112, 2012.
[32]  T. Schaller, C. Goujon, and M. H. Malim, “AIDS/HIV. HIV interplay with SAMHD1,” Science, vol. 335, no. 6074, pp. 1313–1314, 2012.
[33]  N. Laguette and M. Benkirane, “How SAMHD1changes our view of viral restriction,” Trends in Immunology, vol. 33, no. 1, pp. 26–33, 2012.
[34]  D. Ayinde, N. Casartelli, and O. Schwartz, “Restricting HIV the SAMHD1 way: through nucleotide starvation,” Nature Reviews Microbiology, vol. 10, no. 10, pp. 675–680, 2012.
[35]  C. Goujon, L. Jarrosson-Wuillème, J. Bernaud, D. Rigal, J.-. Darlix, and A. Cimarelli, “With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIVMAC,” Gene Therapy, vol. 13, no. 12, pp. 991–994, 2006.
[36]  C. Goujon, L. Rivière, L. Jarrosson-Wuilleme et al., “SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells,” Retrovirology, vol. 4, article 2, 2007.
[37]  C. Goujon, V. Arfi, T. Pertel et al., “Characterization of simian immunodeficiency virus SIVSM/human immunodeficiency virus type 2 Vpx function in human myeloid cells,” Journal of Virology, vol. 82, no. 24, pp. 12335–12345, 2008.
[38]  S. Schüle, B. Kloke, J. K. Kaiser et al., “Restriction of HIV-1 replication in monocytes is abolished by Vpx of SIVsmmPBj,” PLoS ONE, vol. 4, no. 9, Article ID e7098, 2009.
[39]  R. Kaushik, X. Zhu, R. Stranska, Y. Wu, and M. Stevenson, “A cellular restriction dictates the permissivity of nondividing monocytes/macrophages to lentivirus and gammaretrovirus infection,” Cell Host and Microbe, vol. 6, no. 1, pp. 68–80, 2009.
[40]  N. Sharova, Y. Wu, X. Zhu et al., “Primate lentiviral Vpx commandeers DDB1 to counteract a macrophage restriction,” PLoS Pathogens, vol. 4, no. 5, Article ID e1000057, 2008.
[41]  M. Fujita, M. Otsuka, M. Miyoshi, B. Khamsri, M. Nomaguchi, and A. Adachi, “Vpx is critical for reverse transcription of the human immunodeficiency virus type 2 genome in macrophages,” Journal of Virology, vol. 82, no. 15, pp. 7752–7756, 2008.
[42]  S. Srivastava, S. K. Swanson, N. Manel, L. Florens, M. P. Washburn, and J. Skowronski, “Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection,” PLoS Pathogens, vol. 4, no. 5, Article ID e1000059, 2008.
[43]  A. Bergamaschi, D. Ayinde, A. David et al., “The human immunodeficiency virus type 2 Vpx protein usurps the CUL4A-DDB1DCAF1 ubiquitin ligase to overcome a postentry block in macrophage infection,” Journal of Virology, vol. 83, no. 10, pp. 4854–4860, 2009.
[44]  D. Ayinde, C. Maudet, C. Transy, and F. Margottin-Goguet, “Limelight on two HIV/SIV accessory proteins in macrophage infection: is Vpx overshadowing Vpr?” Retrovirology, vol. 7, article 35, 2010.
[45]  M. H. Malim and M. Emerman, “HIV-1 accessory proteins—ensuring viral survival in a hostile environment,” Cell Host and Microbe, vol. 3, no. 6, pp. 388–398, 2008.
[46]  G. Berger, S. Durand, C. Goujon et al., “A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1-derived lentiviral vectors,” Nature Protocols, vol. 6, no. 6, pp. 806–816, 2011.
[47]  N. Sunseri, M. O'Brien, N. Bhardwaj, and N. R. Landau, “Human immunodeficiency virus type 1 modified to package Simian immunodeficiency virus Vpx efficiently infects macrophages and dendritic cells,” Journal of virology, vol. 85, no. 13, pp. 6263–6274, 2011.
[48]  N. Manel, B. Hogstad, Y. Wang, D. E. Levy, D. Unutmaz, and D. R. Littman, “A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells,” Nature, vol. 467, no. 7312, pp. 214–217, 2010.
[49]  J. Ahn, C. Hao, J. Yan et al., “HIV/Simian Immunodeficiency Virus (SIV) accessory virulence factor Vpx loads the host cell restriction factor SAMHD1 onto the E3 ubiquitin ligase complex CRL4DCAF1,” The Journal of Biological Chemistry, vol. 287, no. 15, pp. 12550–12558, 2012.
[50]  W. Wei, H. Guo, X. Han et al., “A novel DCAF1-binding motif required for Vpx-mediated degradation of nuclear SAMHD1 and Vpr-induced G2 arrest,” Cellular Microbiology, vol. 14, no. 11, pp. 1745–1756, 2012.
[51]  J. S. Gibbs, A. A. Lackner, S. M. Lang et al., “Progression to AIDS in the absence of a gene for vpr or vpx,” Journal of Virology, vol. 69, no. 4, pp. 2378–2383, 1995.
[52]  V. M. Hirsch, M. E. Sharkey, C. R. Brown et al., “Vpx is required for dissemination and pathogenesis of SIV(SM) PBj: evidence of macrophage-dependent viral amplification,” Nature Medicine, vol. 4, no. 12, pp. 1401–1408, 1998.
[53]  M. Belshan, J. T. Kimata, C. Brown et al., “Vpx is critical for SIVmne infection of pigtail macaques,” Retrovirology, vol. 9, article 32, 2012.
[54]  N. Laguette, N. Rahm, B. Sobhian et al., “Evolutionary and functional analyses of the interaction between the myeloid restriction factor SAMHD1 and the lentiviral Vpx protein,” Cell Host and Microbe, vol. 11, no. 2, pp. 205–217, 2012.
[55]  E. S. Lim, O. I. Fregoso, C. O. McCoy, F. A. Matsen, H. S. Malik, and M. Emerman, “The ability of primate lentiviruses to degrade the monocyte restriction factor SAMHD1 preceded the birth of the viral accessory protein Vpx,” Cell Host and Microbe, vol. 11, no. 2, pp. 194–204, 2012.
[56]  C. Zhang, S. de Silva, J. Wang, and L. Wu, “Co-evolution of primate SAMHD1 and Lentivirus Vpx leads to the loss of the vpx gene in HIV-1 ancestor,” PLoS ONE, vol. 7, no. 5, Article ID e37477, 2012.
[57]  M. D. Zimmerman, M. Proudfoot, A. Yakunin, and W. Minor, “Structural insight into the mechanism of substrate specificity and catalytic activity of an HD-domain phosphohydrolase: the 5′-deoxyribonucleotidase YfbR from Escherichia coli,” Journal of Molecular Biology, vol. 378, no. 1, pp. 215–226, 2008.
[58]  D. C. Goldstone, V. Ennis-Adeniran, J. J. Hedden et al., “HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase,” Nature, vol. 480, no. 7377, pp. 379–382, 2011.
[59]  R. D. Powell, P. J. Holland, T. Hollis, and F. W. Perrino, “Aicardi-Goutières syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase,” The Journal of Biological Chemistry, vol. 286, no. 51, pp. 43596–43600, 2011.
[60]  A. Brandariz-Nunez, J. C. Valle-Casuso, T. E. White et al., “Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac,” Retrovirology, vol. 9, article 49, 2012.
[61]  H. Hofmann, E. C. Logue, N. Bloch et al., “The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nucleus,” Journal of Virology, vol. 86, no. 23, pp. 12552–12560, 2012.
[62]  S. Coon, D. Wang, and L. Wu, “Polymorphisms of the SAMHD1 gene are not associated with the infection and natural control of HIV type 1 in Europeans and African-Americans,” AIDS Research and Human Retroviruses, vol. 28, no. 12, pp. 1565–1573, 2012.
[63]  B. Kim, L. A. Nguyen, W. Daddacha, and J. A. Hollenbaugh, “Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages,” The Journal of Biological Chemistry, vol. 287, no. 26, pp. 21570–21574, 2012.
[64]  P. Reichard, “Interactions between deoxyribonucleotide and DNA synthesis,” Annual Review of Biochemistry, vol. 57, pp. 349–374, 1988.
[65]  S. de Silva, H. Hoy, T. S. Hake, H. K. Wong, P. Porcu, and L. Wu, “Promoter methylation regulates SAMHD1 gene expression in human CD4+ T cells,” The Journal of Biological Chemistry, vol. 288, no. 13, pp. 9284–9292, 2013.
[66]  C. St Gelais, S. de Silva, S. M. Amie et al., “SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4+ T-lymphocytes cannot be upregulated by interferons,” Retrovirology, vol. 9, no. 1, article 105, 2012.
[67]  S. Welbourn, E. Miyagi, T. E. White, F. Diaz-Griffero, and K. Strebel, “Identification and characterization of naturally occurring splice variants of SAMHD1,” Retrovirology, vol. 9, no. 1, article 86, 2012.
[68]  S. B. Baylin and P. A. Jones, “A decade of exploring the cancer epigenome-biological and translational implications,” Nature Reviews Cancer, vol. 11, no. 10, pp. 726–734, 2011.
[69]  G. I. Rice, J. Bond, A. Asipu et al., “Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response,” Nature Genetics, vol. 41, no. 7, pp. 829–832, 2009.
[70]  N. Li, W. Zhang, and X. Cao, “Identification of human homologue of mouse IFN-γ induced protein from human dendritic cells,” Immunology Letters, vol. 74, no. 3, pp. 221–224, 2000.
[71]  N. Yan, A. D. Regalado-Magdos, B. Stiggelbout, M. A. Lee-Kirsch, and J. Lieberman, “The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1,” Nature Immunology, vol. 11, no. 11, pp. 1005–1013, 2010.
[72]  H. Yu, S. M. Usmani, A. Borch et al., “The efficiency of Vpx-mediated SAMHD1 antagonism does not correlate with the potency of viral control in HIV-2-infected individuals,” Retrovirology, vol. 10, article 27, 2013.
[73]  G. Doitsh, M. Cavrois, K. G. Lassen et al., “Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue,” Cell, vol. 143, no. 5, pp. 789–801, 2010.
[74]  W. Hübner, G. P. McNerney, P. Chen et al., “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science, vol. 323, no. 5922, pp. 1743–1747, 2009.
[75]  P. Chen, W. Hübner, M. A. Spinelli, and B. K. Chen, “Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses,” Journal of Virology, vol. 81, no. 22, pp. 12582–12595, 2007.
[76]  W. Mothes, N. M. Sherer, J. Jin, and P. Zhong, “Virus cell-to-cell transmission,” Journal of Virology, vol. 84, no. 17, pp. 8360–8368, 2010.
[77]  I. Puigdomenech, N. Casartelli, F. Porrot, and O. Schwartz, “SAMHD1 restricts HIV-1 cell-to-cell transmission and limits immune detection in monocyte-derived dendritic cells,” Journal of Virology, vol. 87, no. 5, pp. 2846–2856, 2013.
[78]  E. Pauls, E. Jimenez, A. Ruiz et al., “Restriction of HIV-1 replication in primary macrophages by IL-12 and IL-18 through the upregulation of SAMHD1,” Journal of Immunology, vol. 190, no. 9, pp. 4736–4741, 2013.
[79]  S. M. Amie, E. Noble, and B. Kim, “Intracellular nucleotide levels and the control of retroviral infections,” Virology, vol. 436, no. 2, pp. 247–254, 2013.
[80]  W. Y. Gao, A. Cara, R. C. Gallo, and F. Lori, “Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus type 1 replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 19, pp. 8925–8928, 1993.
[81]  T. L. Diamond, M. Roshal, V. K. Jamburuthugoda et al., “Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase,” The Journal of Biological Chemistry, vol. 279, no. 49, pp. 51545–51553, 2004.
[82]  J. A. Zack, S. J. Arrigo, S. R. Weitsman, A. S. Go, A. Haislip, and I. S. Y. Chen, “HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure,” Cell, vol. 61, no. 2, pp. 213–222, 1990.
[83]  H. Lahouassa, W. Daddacha, H. Hofmann et al., “SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates,” Nature Immunology, vol. 13, no. 3, pp. 223–228, 2012.
[84]  K. S. Jones, C. Petrow-Sadowski, Y. K. Huang, D. C. Bertolette, and F. W. Ruscetti, “Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4+ T cells,” Nature Medicine, vol. 14, no. 4, pp. 429–436, 2008.
[85]  T. E. White, A. Brandariz-Nunez, J. C. Valle-Casuso et al., “The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation,” Cell Host and Microbe, vol. 13, no. 4, pp. 441–451, 2013.
[86]  A. Cribier, B. Descours, A. L. Valadao, N. Laguette, and M. Benkirane, “Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1,” Cell Reports, vol. 3, no. 4, pp. 1036–1043, 2013.
[87]  J. Yan, S. Kaur, M. Delucia et al., “Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection,” The Journal of Biological Chemistry, vol. 288, no. 15, pp. 10406–10417, 2013.
[88]  M. Delucia, J. Mehrens, Y. Wu, and J. Ahn, “HIV-2 and SIVmac accessory virulence factor Vpx down-regulates SAMHD1 catalysis prior to proteasome-dependent degradation,” The Journal of Biological Chemistry, 2013.
[89]  A. Goncalves, E. Karayel, G. I. Rice et al., “SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutières syndrome-associated mutations,” Human Mutation, vol. 33, no. 7, pp. 1116–1122, 2012.
[90]  V. Tungler, W. Staroske, B. Kind et al., “Single-stranded nucleic acids promote SAMHD1 complex formation,” Journal of Molecular Medicine, vol. 91, no. 6, pp. 759–770, 2013.
[91]  N. Beloglazova, R. Flick, A. Tchigvintsev et al., “Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction,” The Journal of Biological Chemistry, vol. 288, no. 12, pp. 8101–8110, 2013.
[92]  T. Pertel, C. Reinhard, and J. Luban, “Vpx rescues HIV-1 transduction of dendritic cells from the antiviral state established by type 1 interferon,” Retrovirology, vol. 8, article 49, 2011.
[93]  L. Dragin, L. A. Nguyen, H. Lahouassa et al., “Interferon block to HIV-1 transduction in macrophages despite SAMHD1 degradation and high deoxynucleoside triphosphates supply,” Retrovirology, vol. 10, article 30, 2013.
[94]  C. Goujon, T. Schaller, R. P. Galao et al., “Evidence for IFNα-induced, SAMHD1-independent inhibitors of early HIV-1 infection,” Retrovirology, vol. 10, article 23, 2013.
[95]  J. W. Schoggins, S. J. Wilson, M. Panis et al., “A diverse range of gene products are effectors of the type i interferon antiviral response,” Nature, vol. 472, no. 7344, pp. 481–485, 2011.
[96]  B. K. Thielen, J. P. McNevin, M. J. McElrath, B. V. S. Hunt, K. C. Klein, and J. R. Lingappa, “Innate immune signaling induces high levels of TC-specific deaminase activity in primary monocyte-derived cells through expression of APOBEC3A isoforms,” The Journal of Biological Chemistry, vol. 285, no. 36, pp. 27753–27766, 2010.
[97]  G. Berger, S. Durand, G. Fargier et al., “Apobec3a is a specific inhibitor of the early phases of hiv-1 infection in myeloid cells,” PLoS Pathogens, vol. 7, no. 9, Article ID e1002221, 2011.
[98]  C. Dong, A. M. Janas, J. Wang, W. J. Olson, and L. Wu, “Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis- and trans-infection,” Journal of Virology, vol. 81, no. 20, pp. 11352–11362, 2007.
[99]  C. Dong, C. Kwas, and L. Wu, “Transcriptional restriction of human immunodeficiency virus type 1 gene expression in undifferentiated primary monocytes,” Journal of Virology, vol. 83, no. 8, pp. 3518–3527, 2009.
[100]  L. Ganesh, E. Burstein, A. Guha-Niyogi et al., “The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes,” Nature, vol. 426, no. 6968, pp. 853–857, 2003.
[101]  C. Goujon and M. H. Malim, “Characterization of the α interferon-induced postentry block to HIV-1 infection in primary human macrophages and T cells,” Journal of Virology, vol. 84, no. 18, pp. 9254–9266, 2010.
[102]  M. Li, E. Kao, X. Gao et al., “Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11,” Nature, vol. 491, no. 7422, pp. 125–128, 2012.
[103]  W. Sohn, D. Kim, K. Lee et al., “Novel transcriptional regulation of the schlafen-2 gene in macrophages in response to TLR-triggered stimulation,” Molecular Immunology, vol. 44, no. 13, pp. 3273–3282, 2007.
[104]  T. Pertel, S. Hausmann, D. Morger et al., “TRIM5 is an innate immune sensor for the retrovirus capsid lattice,” Nature, vol. 472, no. 7343, pp. 361–365, 2011.
[105]  R. P. Galao, A. Le Tortorec, S. Pickering, T. Kueck, and S. J. Neil, “Innate sensing of HIV-1 assembly by Tetherin induces NFκB-dependent proinflammatory responses,” Cell Host and Microbe, vol. 12, no. 5, pp. 633–644, 2012.
[106]  A. Tokarev, M. Suarez, W. Kwan, K. Fitzpatrick, R. Singh, and J. Guatelli, “Stimulation of NF-κB activity by the HIV restriction factor BST2,” Journal of Virology, vol. 87, no. 4, pp. 2046–2057, 2013.
[107]  J. Wu, L. Sun, X. Chen et al., “Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA,” Science, vol. 339, no. 6121, pp. 826–830, 2013.
[108]  L. Sun, J. Wu, F. Du, X. Chen, and Z. J. Chen, “Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway,” Science, vol. 339, no. 6121, pp. 786–791, 2013.
[109]  P. Gao, M. Ascano, Y. Wu et al., “Cyclic [G(2′, 5′)pA(3′, 5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase,” Cell, vol. 153, no. 5, pp. 1094–1107, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133