全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biochemical Studies on Methylglyoxal-Mediated Glycated Histones: Implications for Presence of Serum Antibodies against the Glycated Histones in Patients with Type 1 Diabetes Mellitus

DOI: 10.1155/2013/198065

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reactive carbonyl species (RCS) mainly reacts with lysine and arginine residues of proteins to form advanced glycation end products (AGEs). Histone was glycoxidated with glyoxal and methylglyoxal. It was characterized by polyacrylamide gel electrophoresis and quenching studies involving penicillamine and aminoguanidine as carbonyl scavengers. Further characterization of histone modified with methylglyoxal was done by UV, fluorescence, and IR spectrophotometry. Spectral analysis of the protein clearly demonstrates structural perturbation in the histone by methylglyoxal. Methylglyoxal-induces cross-linking in the protein leading to aggregation. Role of methylglyoxal mediated glycoxidation of histone in type 1 diabetes was also undertaken. Antibodies were detected against glycoxidated histone in sera of type 1 diabetes patients by solid-phase enzyme immunoassay. The findings indicate that as a result of structural perturbation in histone by methylglyoxal, the modified histone may be involved in production of serum antibodies in the diabetes patients. 1. Introduction There is overwhelming evidence for involvement of reactive oxygen species (ROS) in a number of pathophysiological conditions such as diabetes, cancer, and aging but the studies linking reactive carbonyl species (RCS) to the conditions are limited [1, 2]. RCS, such as methylglyoxal, is produced by degradation of lipid peroxidation products, early protein glycation adducts, and as a byproduct of glycolysis. RCS modification of histone results in cross-linking of proteins and induces ROS-dependent cleavage of plasmid DNA [3]. The proteasome degradation of RCS products is not complete and remnants may accumulate and cause epigenetic changes as well as further DNA and protein damage [4]. Earlier studies have shown that histones from liver cells of diabetic rats contain high level of AGEs [5]. We [6] have found antigenicity of glycated poly-L-lysine in experimental animals and autoantibodies were also detected against the modified lysine polypeptide in diabetes patients. A recent work has demonstrated in vivo formation of RCS-mediated AGEs in histone H1 using antibodies against oxidative protein adducts [7]. This study characterizes methylglyoxal-modified histone (a lysine-rich protein) and evaluates its role in type 1 diabetes patients. 2. Materials and Methods 2.1. Chemicals Calf thymus whole histones (type II-A) and methylglyoxal were purchased from Sigma (St. Louis, MO, USA). Polystyrene flat bottom UV microtiter plates were obtained from Greiner BioOne (Germany). All other chemicals and reagents

References

[1]  J. W. Baynes and S. R. Thorpe, “Role of oxidative stress in diabetic complications: a new perspective on an old paradigm,” Diabetes, vol. 48, no. 1, pp. 1–9, 1997.
[2]  J. W. Baynes and S. R. Thorpe, “Glycoxidation and lipoxidation in atherogenesis,” Free Radical Biology and Medicine, vol. 28, no. 12, pp. 1708–1716, 2000.
[3]  M. J. Roberts, G. T. Wondrak, D. C. Laurean, M. K. Jacobson, and E. Jacobson, “DNA damage by carbonyl stress in human skin cells,” Mutation Research, vol. 522, no. 1-2, pp. 45–56, 2003.
[4]  D. Cervantes-Laurean, M. J. Roberts, E. L. Jacobson, and M. K. Jacobson, “Nuclear proteasome activation and degradation of carboxymethylated histones in human keratinocytes following glyoxal treatment,” Free Radical Biology and Medicine, vol. 38, no. 6, pp. 786–795, 2005.
[5]  A. Gugliucci and M. Bendayan, “Histones from diabetic rats contain increased levels of advanced glycation end products,” Biochemical and Biophysical Research Communications, vol. 212, no. 1, pp. 56–62, 1995.
[6]  N. A. Ansari, M. Moinuddin, K. Alam, and A. Ali, “Preferential recognition of Amadori-rich lysine residues by serum antibodies in diabetes mellitus: role of protein glycation in the disease process,” Human Immunology, vol. 70, no. 6, pp. 417–424, 2009.
[7]  S. Pashikanti, G. A. Boissonneault, and D. Cervantes-Laurean, “Ex vivo detection of histone H1 modified with advanced glycation end products,” Free Radical Biology and Medicine, vol. 50, no. 10, pp. 1410–1416, 2011.
[8]  A. Gugliucci, D. H. M. Bastos, J. Schulze, and M. F. F. Souza, “Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins,” Fitoterapia, vol. 80, no. 6, pp. 339–344, 2009.
[9]  A. Gugliucci and T. Menini, “The polyamines spermine and spermidine protect proteins from structural and functional damage by AGE precursors: a new role for old molecules?” Life Sciences, vol. 72, no. 23, pp. 2603–2616, 2003.
[10]  R. Ali and K. Alam, “Evaluation of antibodies against oxygen free radical-modified DNA by ELISA,” in Methods in Molecular Biology: Oxidative Stress Biomarkers and Antioxidants Protocols, D. Armstrong, Ed., pp. 171–181, Humana Press, New Jersey, NJ, USA, 2002.
[11]  H. Talasz, S. Wasserer, and B. Puschendorf, “Nonenzymatic glycation of histones in vitro and in vivo,” Journal of Cellular Biochemistry, vol. 85, no. 1, pp. 24–34, 2002.
[12]  A. Schmitt, J. Schmitt, G. Münch, and J. Gasic-Milencovic, “Characterization of advanced glycation end products for biochemical studies: side chain modifications and fluorescence characteristics,” Analytical Biochemistry, vol. 338, no. 2, pp. 201–215, 2005.
[13]  Z. Rasheed, L. Kumar, S. Abbas, I. Prasad, N. A. Ansari, and R. Ahmad, “Advanced glycation end-products (AGEs) damaged IgG, a target for circulating autoantibodies in patients with type 1 diabetes mellitus,” Open Glycoscience, vol. 2, pp. 1–8, 2009.
[14]  Y. Choi and S. Lim, “Characterization of anti-advanced glycation end product antibodies to nonenzymatically lysine-derived and arginine-derived glycated products,” Journal of Immunoassay and Immunochemistry, vol. 30, no. 4, pp. 386–399, 2009.
[15]  N. A. Ansari and Z. Rasheed, “Non-enzymatic glycation of proteins: from diabetes to cancer,” Biochemistry B, vol. 3, no. 4, pp. 335–342, 2009.
[16]  N. A. Ansari, M. Moinuddin, and R. Ali, “Glycated lysine residues: a marker for non-enzymatic protein glycation in age-related diseases,” Disease Markers, vol. 30, no. 6, pp. 317–324, 2011.
[17]  H. M. Sims, A. L. Birdwell, K. E. OReilley, A. Bwashi, and B. D. Wing, “Inhibition of protein glycation with varying concentrations of lysine,” The FASEB Journal, vol. 22, 1123. 15, 2008.
[18]  A. Jafarnejad, S. Z. Bathaie, M. Nakhjavani, M. Z. Hassan, and S. Banasadegh, “The improvement effect of L-Lys as a chemical chaperone on STZ-induced diabetic rats, protein structure and function,” Diabetes/Metabolism Research and Reviews, vol. 24, no. 1, pp. 64–73, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133